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L. Ermanni

Foreword

Which are the criteria to establish that a mathematical subject, which consists of math-

ematical objects and questions (or problems) about the objects, is interesting or im-

portant? In my opinion there are two criteria for this purpose. One criterion is that a

sufficient number of mathematical authorities in the subject’s field agree that the sub-

ject is interesting or important. This was, to mention a notable example, the case for

the question whether the set theoretic continuum hypothesis follows or not from ZFC

(Zermelo-Fraenkel axioms + axiom of choice).

The second criterion, that is hardly satisfied by the question in the example just

given and is less compatible with the modern mathematical spirit than the first one,

is fulfilled when the questions, which are part of the subject, are not in some way

a mathematical triviality and their answer leads to the answer of questions about a

major field outside of mathematics that a sufficient number of authorities in that field

agree to declare interesting or important. In the past, until a few hundred years ago,

almost exclusively this second criterion was used to consider a mathematical subject

interesting or important. A good, albeit very particular, example for the application

of this second criterion is the interest that existed for a solution to the problem of

the bridges of Königsberg, which led to a mathematical problem, the problem which

graphs are Eulerian, whose solution made it concretely impossible to travel a round trip

traversing each of the bridges exactly once. Another example is the entire subject of real

I



L. Ermanni

analysis, whose importance at the beginning, was given by the application to mechanics.

This second criterion is less compatible with the modern mathematical spirit, because

it requires to fill in the gap between mathematics and the outside world, which has

become much wider in the past century or so. It is often not clear at all when results

in a mathematical subject can be used to answer questions about a field outside of

mathematics.

So, for example, while the works of Gödel and of Turing on Turing Machines are

considered to have been and, perhaps, to still be useful in the development of computer

science, it is not obvious in which way precisely this usefulness happened. After all, no

physical computer perfectly matches a Turing Machine or relies on the completeness of

first-order logic to run.

The theory of Banach spaces has important applications to quantum mechanics, but

nobody would realistically claim that the theory of Banach spaces represents the whole

quantum mechanics in such a faithful way that it would be reasonable to identify the

latter with the former. Therefore, if a mathematician, whose field is functional analysis,

would develop a research subject within the theory of Banach spaces, it could be difficult

to establish how useful results about this subject are in answering quantum mechanical

questions.

But all these difficulties in determining whether results about a mathematical subject

can be used to answer questions about a field outside of mathematics disappear when

this field is represented by the objects of the mathematical subject with the thesis that
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these objects, due to the way in which they represent the field, are actually the field being

represented, i. e. are identifiable with it. In this case, once the thesis is accepted, by the

second criterion, if a sufficient number of authorities in the field outside of mathematics

agree that certain questions about it are interesting or important and the representations

of these questions are part of the subject, then the mathematical subject, provided its

questions are not trivial, is interesting or important, too.

To go back to a previous example, the bridges of any town, whence also of Königs-

berg, can be easily represented by a graph (a mathematical object from graph theory) in

such a way that it would be fully reasonable to claim that, from the view point of travel-

ing across them, the graph is the bridges of the town. Stating that the graph is Eulerian

is the same as stating that it is possible to travel a round trip crossing each bridge of the

town exactly once. If the king of Prussia, to which Königsberg belonged, indisputably

alone a sufficient authority in any field, would have been interested in knowing whether

it was possible to travel a round trip crossing each bridge of Königsberg exactly once,

then a complete characterization of Eulerian graphs, in a time in which graphs had

essentially not been studied yet, would have been an interesting mathematical subject.

The second criterion to establish that a mathematical subject is interesting or im-

portant constitutes the core of the motivation for this book. The next two paragraphs

explain why.

The question whether there is a chemical synthesis of a substance from other sub-

stances is probably the most important question in the field of chemical synthesis or
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even in chemistry, altogether. Historically chemistry is rooted in the desperate attempt

of the alchemists, in the middle age, to obtain gold from other metals.

This books presents and examines, at an introductory level, with a strong focus on its

logical and model theoretical aspects, a non-trivial, mathematical subject, at whose core

lies a representation of the organic synthesis, as a field outside of mathematics, with the

thesis that this representation, due to the, in this book, precisely described way in which

it represents the organic synthesis, can be identified with the organic synthesis. With

this thesis the question whether there is a chemical synthesis of an organic substance

from other organic substances becomes a mathematical question. This question is also

part of the core of this book’s subject.

It becomes a mathematical question like, for instance, the question of the alchemists,

whether it is possible to obtain gold from other metals, by a transformation achievable

by them (i. e. a chemical transformation). A representation of a metal by an atom

carrying exactly one symbol, with the thesis that atoms representing different metals

carry different symbols, together with a representation, that it would be to tedious to

describe in this foreword, of the transformations achievable by the alchemists, requiring

the thesis that in a transformation neither the atoms nor their symbol change, would

turn the question of the alchemists into a trivial, logical question, with a negative answer.

There are two possibilities to describe in which way mathematical objects represent

a field outside of mathematics. The first possibility is to concretely assign a meaning in

the field outside of mathematics to the mathematical objects and formulate the thesis
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about the field, first of all, for the assignment to exist, and, second, for the mathematical

statements about the subject to be true with the assigned meaning.

The second possibility, which is the one adopted in this book, is to build the math-

ematical objects using the terminology of the field outside of mathematics, which de-

termines their meaning in this field. The second possibility is not necessarily easier or

more suitable than the first one, since it requires often to build mathematical objects

with an awkward and overabundant terminology. Additionally, the non-mathematical

meaning of the terminology might interfere with the logical reasoning. The advantage

of the second possibility is that it allows to never leave mathematics.

The first possibility is, for example, the case, when the cartesian product [0, n] ×

{n}(n ∈ N, n 6= 0) of the rational interval [0, n] (whose usual order is ≤) and the set {n},

with the order (r, n) ≤ (s, n) if and only if r ≤ s, represents a physical n meter beam,

every physical n meter beam is represented by [0, n]×{n} with ≤, every p ∈ [0, n]×{n}

represents a physical point of the n meter beam and the order ≤ represents the physical

relation to be to the left. Then, among others, the theses must be adopted that n

uniquely determines an n meter beam and that between any two distinct points of an

n meter beam there is a third one, distinct from the two (said more exactly, for any

distinct points a, b of an n meter beam, such that a is to the left of b, there is a point

different from a and from b, that is to the left of b, to which a is to the left).

The second possibility is just to call the set [0, n] × {n} (n ∈ N, n 6= 0) with the

previously defined order ≤ the n meter beam, every p ∈ [0, n] × {n} a point of it and
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define a point p of the n meter beam to the left of a point q of it if and only if p ≤ q.

In the case of this second possibility, no theses need to be adopted.

Summarized to an extreme, the objects of this book are the classes of structures that

are derived by iterating an interpretation (fixed for the class), defined with parameters,

starting from structures built by disjointly summing copies of structures from a set (fixed

for the class) of finite structures. It is not known to me that those properties of the

classes of structures derived in this way, that are examined in this book (i. e. whether

they realize a sentence or are axiomatizable) have been examined in other works.

This book aims, to a significant extent, at suggesting in which directions its subject’s

core, which is, as previously written, a mathematical representation of the organic syn-

thesis with the question, under which conditions there is a synthesis of a given compound

from given compounds, can be developed and which issues from different mathemati-

cal disciplines (particularly from logic and model theory) arise from it. The results

contained in the book form a solid base for a further and promising development.

We have chosen a policy that prevents as much as possible the repeated setting of

variable values (for example with “let” or “assume” statements). This causes sometimes

the scope of a variable setting to be a few pages long or even to last for the whole section.

Mathematical statements are lemmas, propositions or theorems. The end of their

proofs is marked with ♦. We do not always refer explicitly, in a proof of a statement, to

the previous basic results of this book (for example to Theorem 7.4 or to Proposition 7.1).

Theorems are considered to have a higher relevance than propositions. Propositions
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could sometimes just be what in other works are remarks. A lemma in this work either

becomes essentially redundant once the mathematical statement, it is a lemma of, has

been proven or it is directly incorporated into a proof of a mathematical statement,

which means, in this book, that it has no life outside of this proof.
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0 Introduction

0.1 Synthesizability problems

The synthesizability problem for a reaction step notionR and a finite setA of compounds

is the question:

Given a compound C, is there a synthesis of C from A according to R?

A reaction step notion is conceived as a finite set of reaction step rules. A synthesis

according to R of C from A has in its initial stage only compounds from A, C in its

final stage and proceeds by steps according to the rules in R. Equivalently we could

restate the question:

Given a compound C, is there is a reaction according to R having a left side

whose compounds belong all to A and a right side of which C is a compound?

The synthesizability problem for the notion R and the compound C is the question:

Given a finite set A of compounds, is there a synthesis of C from A according

to R?

Finally the synthesizability problem for a set D of notions is the question:

Given R ∈ D and compounds A1, . . . , An, C, is there a synthesis of C from

{A1, . . . , An} according to R?
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From the view point of computation theory, a problem, for some alphabet Σ and

a set A of words over Σ, is the question, given a word w over Σ, whether w is in A

or not. A problem is solvable iff (if and only if) there is a procedure the computes the

right answer for every word over the problem’s alphabet. In a graph theoretical problem

the words over its alphabet code graphs. This book presents a list of graph theoretical

problems and shows their solvability or unsolvability, whichever is the case.

Organic chemical terms, like (organic) formula, compound, sum of formulas, atom,

charge, electron of a formula, being joined by a bond in a formula, carrying a charge

in a formula, reaction step rule, synthesis, reaction, are strictly mathematically defined

in this work and have, in their mathematical nature, nothing to do with organic chem-

istry. Nevertheless they are intended to have their ordinary chemical meaning. Whether

they have it or not, is not a mathematical question, but a matter of opinion. Indeed,

the likelihood that they do motivates the investigation presented in this book. This

introduction attempts, without ever leaving mathematics, to let the chemical meaning

emerge to an extent that can be evaluated from a chemical perspective. The price to

pay for this attempt is that the order of the definitions, the terminology used in them

as well as their number lack of high mathematical elegance.

0.2 Synthesis and reactions

The organic chemical terms are defined with parameters. These parameters, which

depend on three distinct symbols +, −, •, are
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m ∈ N,

a surjective function, called multiplicity, from a set, whose elements are called

bonds, to {1, . . . ,m},

a subset of {+,−, •}, whose elements are called implicit symbols,

finitely many symbols, called atomic, different from the implicit symbols,

that together with the implicit symbols form the building symbols, whose

number is n+ 1 (n ∈ N, n ≥ m),

a function, called valence, that assigns a k ∈ N to every atomic symbol and

1 to every implicit symbol.

The organic chemical terms are defined in Chapter 12 from the graph theoretical con-

cepts introduced in Chapter 2 through the parameters listed above, a bijection s from

{0, . . . , n} to the set of building symbols and the function d : {0, . . . , n} → N, for which

d(i) is the valence of s(i) (0 ≤ i ≤ n). These definitions act as an interface between the

graph theoretical terminology and the chemical terminology, allowing a precise under-

standing of the intended chemical meaning. In particular they clarify what it means (in

the representation of this book, of course) that an atom carries a charge or an electron

and what a reaction step notion is. Most importantly, they are needed to proceed from

the graph theoretical problems formulated in Chapter 3 to the synthesizability problems

formulated at the beginning of this introduction.

Here are a few examples of definitions given in Chapter 12. A sum of formulas is
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defined as an m-bound n-multigraph with degree requirement d, a formula as a con-

nected sum of formulas, a compound as an isomorphism class of formulas. Furthermore,

and rather obviously, assuming m ≥ 2, the atom a is joined to the atom b by a double

bond (a bond of multiplicity 2) in the sum G of formulas simply iff RG
2 (a, b). Perhaps

less obviously, the atom a carries the positive charge b in G iff RG
1 (a, b).

In this introduction we define the organic chemical terms directly, without falling

back to the graph theoretical concepts of Chapter 2. This way of proceeding delivers to

the reader two equivalent definitions of these terms.

We begin with the definition of a sum of arrangements. A sum of arrangements

consists of finitely many, but at least one, positions, which are atoms or implicit. At

every position exactly one building symbol occurs, which is atomic, if the position is an

atom and implicit, if the position is implicit. A position at which +, − respectively •

occurs is called a positive charge, a negative charge respectively an electron. A charge is

a positive or a negative charge. A sum of arrangements whose positions are all implicit,

is called implicit. If it has an atom is called atomic.

The positions are pairwise joined (to each other) by exactly one bond or by no

bond and carry a number (0 included) of positions. If two positions are joined by a

bond, then they are different and both atoms. If a position carries a position, then,

again, they are different and the second one is implicit. If an implicit position carries

an implicit position, the the second one carries the first one. If m = 0 (i. e. there are no

bonds), then no position carries a position. The degree of a position, which is the sum
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of the multiplicities of the bonds joining it to other atoms, increased by the number of

positions, which it carries or by which it is carried, is less than or equal to the valence

of the building symbol occurring at it.

Sum of arrangements G,H that do not have positions in common can be added in

a quite natural way. This sum represents the sum appearing in any of the two sides

of a (organic) chemical reaction. Their sum is the sum of arrangements whose set of

positions is the union of the positions of G and H, that is equal to G on the positions

of G, is equal to H on the positions of H and satisfies the condition that no atom of

G is joined by a bond to an atom of H and no position of G carries or is carried by a

position of H. Sum of arrangements G, H that transform into each other by adding to

any of the two or to both an implicit sum of arrangements with new elements are called

atomically equivalent.

A semirule is a pair of distinct sums of arrangements, of its left and right side, that

satisfies the fundamental reaction principles, which state that, in passing from one side

of the semirule to the other,

(1) no atoms are destroyed or created,

(2) they do not change neither the atomic symbol occurring at them nor their degree,

(3) no implicit position changes the implicit symbol occurring at it or the number of

positions that carry it (0 or 1), if the position belongs to both sides.

Semirules, both sides of which are atomic, correspond to the intuitive idea of an organic
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chemical reaction step rule. Unfortunately, because the implicit positions in their two

sides can differ, semirules are not quite suitable to be applied in the desired way. For

this purpose we need the reaction step rules. A reaction step rule, or more simply a

rule, is a pair of distinct sums of arrangements with the same positions, again of its left

and right side, that also satisfies the fundamental reaction principles (1), (2), (3), in

passing from one side of the rule to the other. We prefer the notation G → H for the

rule (G,H) and call, in this introduction, a finite set of reaction step rules a reaction

step notion.

From elementary graph theory it follows that for every semirule there is a rule whose

left and right side are atomically equivalent respectively to the left and right side of the

semirule, or, as we will write, that is atomically equivalent to the semirule. Hence every

intuitive idea of an organic chemical reaction step rule is atomically equivalent to a rule.

If a sum of arrangements satisfies the requirement that the degree of every position

of it is equal to the valence of the building symbol at that position, it is called a sum of

formulas. A sum of arrangements is connected iff it is connected in the graph theoretical

meaning, by considering that there is an edge between the positions a and b iff a bond

joins a to b, a carries b or b carries a. An isomorphism from a sum of arrangements

G to a sum of arrangements H is a bijection f from the set of positions of G to the

set of positions of H that preserves the building symbol occurring at a position, the

bond connecting a position to another one and the property that positions have to carry

another one. More precisely f satisfies the conditions that for all positions a, b of G and
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all 1 ≤ i ≤ m

(i) the same building symbol occurs in G at a as in H at f(a),

(ii) a bond of multiplicity i joins a to b in G iff a bond of multiplicity i joins f(a) to

f(b) in H,

(iii) a carries b in G iff f(a) carries f(b) in H.

A sum of arrangements G is contained in a sum of arrangements H iff every position of

G is a position of H and H is equal to G on the positions of G. An isomorphism of G

to a sum of arrangements contained in H is called an embedding of G into H.

A formula is a connected sum of formulas, a compound is an isomorphism class of

formulas and an equation is a rule whose left and consequently also right side is a sum

of formulas. Thus an equation satisfies the fundamental reaction principles. Instead of

writing that a formula G belongs to a compound, we will also write that G is a formula

of the compound or that the compound has the formula G. A compound of a sum of

arrangements is a compound that has a formula contained in the sum of arrangements.

If F0, . . . , Fk−1 are pairwise non-isomorphic formulas and c0, . . . , ck−1 ∈ N we denote by

c0F0 + . . .+ ck−1Fk−1

the class of all sums of pairwise disjoint isomorphic copies of F0, . . . , Fk−1, in which each

Fi (0 ≤ i < k) has exactly ci copies. It is clear that for every sum of formulas G there
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rule to the sum of arrangements G iff f is an embedding of K into G for which H is the

shift, iterated k times, of G at f(a0), . . . , f(a4k−1).

Since every equation is a reaction step rule and every reaction according to some

notion is an equation, we also conclude that the shift has the capability to explain,

step by step, every reaction according to some notion, or, written precisely, that for all

reactions according to some notion there are k ∈ N and a sequence of 4k positions of

the left side of the reaction such that the shift, iterated k times, of the left side of the

reaction at those positions yields the right side of the reaction.

It is easy to establish, on the ground of the definition of the shift operation, given in

Chapter 3, that there is a finite set of pairs (K, (a0, a1, a2, a3)), where {a0, a1, a2, a3} is the

set of positions of the sum of arrangements K, such that the sum of arrangements H is a

shift of the sum of arrangements G with H 6= G iff there is (K, (a0, a1, a2, a3)) in the set

and an embedding f of K into G with H = sh(G, f(a0), f(a1), f(a2), f(a3)). Therefore

there is a reaction step notion, that we call void, such that the sum of arrangements

H is a shift of the sum of arrangements G with H 6= G iff H is the application of the

notion to G.

Since, as we concluded before, the shift has the capability to explain, step by step,

every reaction according to some notion, every reaction according to some notion is a

reaction according to the void notion. This fact can be rephrased by stating that the

shift is the most general reaction step notion.

We discovered previously that for every reaction step rule there is a sum of arrange-
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ments K, k ∈ N and positions a0, . . . , a4k−1 of K with which the rule can be identified.

We also explained why this discovery has a methodological relevance in the application

of a reaction step notion. This discovery has a second advantage, that we have already

used to define 1-fold rules: the classification of the reaction step rules on the ground

of the model and, particularly, graph theoretical properties of their left side and the

positions, with which the rule can be identified.

Several classes of reaction step rules have been defined in Chapter 12 in this way, for

example the class of the additions, eliminations, substitutions, basic rules, unfragmented

rules and k-fold rules.

This introduction began with the definition of three kinds of synthesizability prob-

lems. The synthesizability results, obtained in this book regarding them, can be sum-

marized in the following way:

(I) If 3 building symbols have valence 1, 12 building symbols valence 2 and all bonds

multiplicity 1 (i. e. m = 1), then for a finite set R of 2-fold additions, a 2-element

compound C and a finite set A of at most 6-element compounds neither the

synthesizability problem for R and A, nor the synthesizability problem for R and

C are solvable. This book gives a precise characterization of R, C and A.

(II) Four decidable sets of reaction step notions are presented for which the synthesiz-

ability problem is solvable. They are the class of the finite sets of 1-fold, unfrag-

mented rules without eliminations, the class of the finite sets of rules that have a
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1-fold factorization, all factors of which are not additions, the class of the (finite)

sets of basic additions and the set with just the (non-empty, if m 6= 0) void notion.

(III) The question whether for the class of all finite sets of 1-fold rules or even 1-fold

additions, the synthesizability problem is solvable or not remains open in this

book.

The unsolvability results (I) are obtained by reducing two undecidable word problems

for a semi-Thue system to them. The word problems themselves have been proven

undecidable in a manner imitating Post’s proof of the word problem’s undecidability,

i. e. by reducing the halting problem for a universal Turing machine to them. Both

reduction are presented in Chapter 5.

Whether (I) answers or not the question about the decidability of the organic chem-

ical synthesizability problem, is a matter of opinion and of perception of the physical

world. If it should, then the undecidability result, although a little uncomfortable, has

a much deeper philosophical meaning than the existence of a procedure: the meaning

that higher goals in science, whence in life, can not be achieved by (following) effective

rules, regardless how sophisticated these rules are.

[7] refers to an (unpublished) document in which the author claims that the organic

chemical synthesizability problem is undecidable, as consequence of the undecidability

of the word problem for semigroups. The work cited in [7] dedicates just a few lines

to this result. It does not contain any explanation why the undecidability of the word
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problem for semigroups implies the undecidability of the synthesizability problem. This

explanation could be hardly given in the cited document, since there is no explanation

in it of what a synthesis is. It actually looks like its idea is to reduce the synthesizability

problem to the word problem, which does not prove the undecidability of the former.

For the first two classes in (II) the proof is easy and can be found in Chapter 3. The

solvability for the third class, also shown in Chapter 3, to the contrary, should not be

considered obvious. In fact, by dropping the condition that the additions are basic, the

problem turns undecidable, as a consequence of (I).

The fourth case in (II) is interesting. The law of conservation of matter for a com-

pound and a set of compounds states that every atomic symbol occurring at a position

of a formula of the compound occurs at some position of a formula of a compound in

the set. Assume that the highest valence of a building symbol is ≤ m and, in order to

disregard the implicit symbols, that either only atomic symbols occur at any position of

the formulas of the compound C or every implicit symbol occurs at some position of a

formula of a compound in the set A of compounds. Then the criterion for the existence

of a synthesis according to the void notion of C from A is simply the law of conserva-

tion of matter for C and A. This claim is proven in Chapter 4. It emphasizes again

the idea that the shift is the most general reaction step notion, since, for any reaction

step notion, if there is a synthesis according to that notion of a compound from a set of

compounds, then the law of conservation of matter holds for the compound and the set.

Now, for the void notion, the converse holds, too: If the law of conservation of matter
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is valid for a compound and a set of compounds, then there is a synthesis according to

the void notion of the compound from the set. This claim also implies at once that, for

the void notion, a procedure deciding the synthesizability exists.

A few considerations may help putting (III) in the right perspective. A rule can be

identified with its left side and, for some k ∈ N, 4k positions of it. The application

of the rule is then achieved by the execution, iteratively k times, of the shift at an

image of the positions by means of an embedding of the left side. The shift itself is an

operation at 4 positions. This book does not answer the natural question whether for

the (decidable) set of all (up to isomorphism) reaction step notions, whose rules can

be identified with their left side and exactly 4 positions, the synthesizability problem

remains unsolvable. Should it, rather unexpectedly, turn out to be solvable, then so

would be a very important particular case of the synthesizability problem. With the

right philosophical approach to the organic chemical synthesis, one could say, if this

particular problem would be decidable, that the whole organic chemical synthesizability

is decidable.

0.3 Generalized reaction step notions

The graph theoretical problems have a natural generalization to model theoretical prob-

lems through the existence of a two-way correspondence between the reaction step no-

tions, conceived as a finite set of rules, and the model theoretical interpretations, as

they are defined in Chapter 7, narrowed down to the point of being m-bound reactional.
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A notion yields the same application results as a corresponding interpretation and vice

versa. This two-way correspondence is stated in Chapter 12 (Theorem 12.4) and proven

from Theorem 10.3 in Chapter 10.

The approach to interpretations in this book is not completely standard. They are

conceived as a way to transform a structure into another one and studied with the focus

on the result obtained from iterating this transformation. When a structure interprets

another one on the ground of a given interpretation, it can be considered the same as

the other one, once the properties are intended in the meaning of the interpretation. To

make a simple example, assuming that no red object is blue, a bag containing precisely

5 red and 3 blue objects can be considered the same as a bag with precisely 5 blue and

3 red objects, if we intend, only for the second bag, by “red” the meaning of “blue” and

vice versa.

The correspondence between the reaction step notions and the interpretations means

in particular that for any notion there exists an m-bound reactional interpretation that

is equivalent to the notion, meaning that the right side of a reaction step according to

the notion interprets its left side (by means of this interpretation) and whenever a sum

of arrangements interprets a sum of arrangements, the former is an application of the

notion to the latter. In the light of this interpretation, nothing changes from the right

to the left side of a reaction step according to the notion.

The correspondence between notions and interpretations, being two-way, can be

turned around: Not only every notion has an equivalent m-bound reactional interpreta-
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tion corresponding to it, but every m-bound reactional interpretation has a correspond-

ing equivalent notion. Hence the m-bound reactional interpretations could be another

way to define the reaction step notions, conceived as a finite set of rules.

Additionally, we obtain that arbitrary interpretations that carry a sum of arrange-

ments into a sum of arrangements, by satisfying the fundamental reaction principles,

generalize the reaction step notions. We call them, in this introduction, generalized reac-

tion step notions. Synthesis, synthesis of a compound from a set of compounds, (l-step)

reaction and reaction step can be defined, in an obvious way, according to a generalized

reaction step notion. The concept of synthesis can be generalized even more, by defining

a synthesis of a first-order property of sums of arrangements from a set of compounds

A according to a generalized reaction step notion ϕ as a synthesis G0, . . . , Gl according

to ϕ for which Gl has the property and all compounds of G0 are in A.

The generalized synthesizability problem for a generalized reaction step notion and a

finite set A of compounds asks whether, given a first-order property of sums of arrange-

ments, there is a synthesis according to the notion of the property from A.

Through the model theoretical generalization of the graph theoretical problems,

model theoretical and logical results become available to answer the original graph theo-

retical questions. The generalization opens the door to a wide area of logical and model

theoretical topics. They all essentially turn around an investigation of the ϕ-derivable

structures from a combination of U , obtained by applying finitely many times (or a fixed

finite number of times) the interpretation ϕ for a finite set L of relation symbols, using
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r ∈ N additional constants, to a sum of pairwise disjoint isomorphic copies of structures

belonging to the set U of structures over L.

A first investigation, based on logic, on this subject consists for example in deter-

mining the solvability (or unsolvability) of the following two problems for a finite set L

of relation symbols, a quantifier-free interpretation ϕ for L and finite structures V0, V1

over L:

Given a finite structure U over L, is there an extension of U that is ϕ-

derivable from a combination of {V0}? Is there an extension of V1 that is

ϕ-derivable from a combination of {U}?

In view of the result (I), as shown in Chapter 10 (Corollary 10.1), these problem are

unsolvable for a certain finite set L of relation symbols, a certain quantifier-free inter-

pretation ϕ for L a certain finite structure V0 and a certain 2-element structure V1, both

over L.

The two problems are reduced in Chapter 11 to the finite satisfiability problem

for certain sets of sentences. As a consequence we obtain that the finite satisfiability

problem is not decidable for the classes [∀16 ∧ ∃∗, (14, 17)]= ∧
∧

0≤i<13 ∀x∃ySixy and

[∀∗∧∃2, (14, 17)]= ∧
∧

0≤i<13 ∀x∃ySixy, where Si is a 2-placed relation symbol (0 ≤ i <

13).

A second investigation, based on model theory, on this subject is carried out in the

Chapters 7 and 12. It deals with the ϕ-derivability in a fixed number of steps. It delivers
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a result that has a non-obvious consequence for the generalized synthesizability problem.

For every finite set L of relation symbols, interpretation ϕ for L, set U of structures

over L and l, i ∈ N, structures U0, . . . , Uk−1 ∈ U and c0, . . . , ck−1 ∈ N are explicitly

found in Section 7.2 (Theorem 7.7) (which, indeed, means effectively, if U is finite), with

k less than some K depending only on ϕ, l and i, such that any l-equivalence type of

a structure ϕ-derivable in ≤ i steps from a combination of U is already the type of a

structure ϕ-derivable in ≤ i steps from a sum of pairwise disjoint isomorphic copies of

U0, . . . , Uk−1 in which each Ui (0 ≤ i < k) has at most ci copies.

Three applications of this result are given in Section 7.3. These applications show

that the values U0, . . . , Uk−1 and c0, . . . , ck−1 explicitly found in Section 7.2 are surpris-

ingly manageable and could be of practical interest. They require a good knowledge of

the m-equivalence between structures. For this reason a whole chapter, Chapter 6, in

which a new suitable condition for m-equivalence has been proven, has been dedicated

to this subject.

The non-obvious consequence for the generalized synthesizability problem is that,

for every generalized reaction step notion, set A of compounds, first-order property

δ of sums of formulas and i ∈ N, distinct compounds A0, . . . , Ak−1 ∈ A, having the

formulas respectively F0, . . . , Fk−1, and c̄0, . . . , c̄k−1 ∈ N are explicitly found in Section

12.2 (Proposition 12.12) (effectively, if A is finite), depending only on the notion, A, the

quantifier rank of δ and i, with k less than some K depending only on the notion, the

quantifier rank of δ and i, such that δ is synthesizable in ≤ i steps from A according to

22



L. Ermanni 0 Introduction

the notion iff there is a ≤ i-step reaction G → H according to the notion for which H

has the property δ and G is in the class c0F0 + . . .+ ck−1Fk−1 with ci ≤ c̄i (0 ≤ i < k).

The three applications, mentioned previously, have been themselves applied, in Sec-

tion 12.2, to the synthesizability in a fixed number of steps according to a notion of

a first-order property from a set of compounds. Again, the values A0, . . . , Ak−1 and

c̄0, . . . , c̄k−1 explicitly found in the applications of Section 12.2 are surprisingly manage-

able and, likely, of practical interest.

Finally, a third investigation, provided that U is a finite set of connected structures

and ϕ invertible in a natural way, written correctly, weakly invertible, regards the ax-

iomatizability (in this book always intended as first-order axiomatizability) of the class

of all structures that are ϕ-derivable from a combination of U . We show, in Chapter 9

(Corollary 9.8), that if the class is axiomatizable, then its theory (the set of all sentences

in L holding in every structure of the class) is decidable.

Assuming that θ is a first-order sentence in L, instead of the combinations of U , we

consider the more general case of the models over L of θ and completely characterize

in Corollary 9.4 the weakly invertible interpretations ϕ for L and the sentences θ in L

for which the class of all structures that are ϕ-derivable from a model over L of θ is

axiomatizable.

We also look at the case of the models over L of a theory T in L and, under the

assumption that T and ϕ satisfy an additional condition, completely characterize in

a very concise way in Theorem 9.8 the weakly invertible interpretations ϕ for L and
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the theories T in L for which the class of all structures that are ϕ-definable in (i. e.

ϕ-derivable in 1 step from) a model over L of T is axiomatizable.

We do not want in this introduction to enter in the details about the additional

condition that T and ϕ must satisfy for the proof of the characterization to be correct.

It is anyways abundantly fulfilled, for example, by any theory and those “idempotent”

interpretations that, applied twice in a row to a structure U , both times with the same

values for the r additional constants, yield back the structure U .

A consequence, expressed in Proposition 12.15, of this third investigation, regarding

the generalized synthesizability problem, is that, if ϕ is a weakly invertible generalized

set of rules, F a finite set of formulas, A the set of all compounds having a formula

in F and C the class of all sums of formulas G, for which there is a reaction H → G

according to ϕ, where every compound of H is in A, a sufficient condition for

the generalized synthesizability problem for ϕ and A as well as the theory

of C to be decidable,

is that the class of all structures ϕ-derivable from a combination of F (not just a finite

combination) is axiomatizable or, equivalently, closed under ultraproducts.

If ϕ is quantifier-free and still weakly invertible and the class C of all structures that

are ϕ-derivable from a model over L of the first-oder sentence θ in L is axiomatizable,

Theorem 9.4 states that certain preservation properties of θ, that we explicitly indicate in

the theorem, determine a corresponding, also explicitly indicated, preservation property
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of C. In the case r = 0, which means that no additional constants are used in the

application of ϕ, C is axiomatizable, whence the condition that it is axiomatizable

can be dropped. Moreover Theorem 9.5 yields that in this case, if θ has one of the

preservation properties indicated in Theorem 9.4 or a third property, explicitly indicated

in Theorem 9.5, these properties are also true for C.

Because these preservation properties play the role described above in the exami-

nation of the properties of the class C of structures ϕ-derivable from a structure in a

class D, in relation to the properties of D, we dedicate to them the entire Chapter 8.

More generally, the question how the (preservation) properties of D are reflected in the

properties of C is faced a few times in this book.

0.4 Final considerations

Graphs have been, indeed, extensively used in chemistry for decades to represent organic

formulas and organic molecules. The oldest book I know about graph theory in which

this representation appears is [1]. The reader interested in the chemical approach to the

application of graph theory to organic chemistry can consult, for example, [2], [3], [4],

[5], [6], [7].

In these works graphs are used to investigate the molecular structure, in particular

to determine the molecular properties from the properties of its graph representation.

Other common uses of graph theory in chemistry include the creation of a smart nomen-

clature system or an adequate encoding of the molecule, suitable for being handled by
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a computer.

The reader should keep in mind that these works differ fundamentally from this

book for at least two reasons. First reason: All chemical applications of the results in

this book concern specifically and exclusively the organic chemical synthesis, that is the

chemical transformation process that creates compounds from compounds. In particu-

lar, structural investigations of molecules, organic nomenclature or suitable molecular

encodings are totally foreign to it. It has to be written that [7] suggests and discusses

graph transformation as a way to represent organic reactions, but does not introduce

a graph theoretical representation of the transformation that can be mathematically

examined. Second and most important reason: This book is a book in mathematics.

Arguments, concepts or facts from chemistry, that are not mathematical, do not play

any role whatsoever in the achievement of any result contained in it.
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1 Preliminaries

Chapter 1 outlines the mathematical prerequisites needed to tackle the book. These

prerequisites belong mostly to the fields of logic and model theory. A part of a few

exceptions (for example, the U -extension of V or the combinations of U) they are stan-

dard designations of these fields. More than half of the abbreviations that are used

throughout the book are defined in this chapter.

As usual N is the set of the natural numbers 0, 1, 2, . . .. ∈, ⊆ are the set-theoretic

element respectively subset relations. ∅, A ∪ B, A ∩ B, A \ B denote respectively the

empty set, the union of the sets A and B, their intersection and their difference (the

complement of B in A).
⋃
A,
⋂
A are the union of A (set of all elements of an element

of A) respectively the intersection of A (set of all elements of every element of A). An

is the set of all n-tuples of elements of the set A. The cardinality of A is written |A|. A

choice set of a set A (of sets) is a set X ⊆
⋃
A with |X ∩ Y | = 1 for all Y ∈ A. R is an

n-placed relation over A (n ∈ N) iff either R(a0, . . . , an−1) holds or it does not, for all

a0, . . . , an−1 ∈ A. dom(f) and rg(f) denote the domain and the range, respectively, of

the function f . The identity function with domain A is denoted by idA, the restriction

of the function f to A, with A ⊆ dom(f), by f |A and the composition of the functions

f, g by f ◦ g. f: A→ B (f is a function from A to B) means that f is a function with

dom(f) = A and rg(f) ⊆ B. f is an n-placed function over A (n ∈ N) iff f is a function

with An ⊆ dom(f) and rg(f |An) ⊆ A.
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p is an l-sequence iff p = p0, . . . , pl−1 (l ∈ N). l is called the length of the l-

sequence p. A finite sequence is an l-sequence for some l ∈ N. A sequence is either

finite or a function p0, p1, p2, . . . with domain N. Let p be an l-sequence and q an m-

sequence. We denote the (l + m)-sequence p0, . . . , pl−1, q0, . . . , qm−1, when the context

excludes ambiguities, by p, q. We call a sequence whose range is contained in the set A

a sequence to A.

We assume a basic knowledge in logic and model theory as it can be acquired from

several textbooks [1], [2], [3], [4], [5]. The logical conjunction (and), disjunction (or),

negation (not), the universal quantifier (for all) and the existential quantifier (there

is) are denoted respectively by ∧,∨,¬,∀,∃.
∧
,
∨

denote the conjunction respectively

disjunction of a set of formulas. A symbol is exactly one of the following three ob-

jects: a relation symbol, a function symbol or a constant. Every relation (or function)

symbol F is n-placed for exactly one n ∈ N \ {0}, denoted by νF . All sentences and

formulas are intended to be first-order, unless there is a reason against it. As usual

ψ(x0, . . . , xk−1) means that all variables occurring free in the formula ψ are among

x0, . . . , xk−1. Square brackets, as in ψ[y0, . . . , yi−1 : z0, . . . , zi−1] are used to represent a

variable substitution in a formula ψ(x0, . . . , xk−1). If y0, . . . , yi−1 = x0, . . . , xi−1, we may

simply write ψ[z0, . . . , zi−1] for the substituted formula; if y0, . . . , yi−1 = x0, . . . , xk−1,

simply ψ(z0, . . . , zk−1). Square brackets are also used to represent the substitution of

subformulas, as in ψ[Rt0 . . . tνR : ϕ]. The quantifier rank of a formula ψ, qr(ψ), is

recursively defined in the usual way starting from the atomic formulas. [4] [5]
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Let L be a set of symbols. RU is a νR-placed relation over the domain dom(U) of the

structure U over L , cU ∈ dom(U) and fU is a νf -placed function over dom(U), for any

relation symbol R ∈ L, any constant c ∈ L and any function symbol f ∈ L. dom(U)

is always assumed to be non-empty. If L0 ⊆ L, the reduct of U to L0 is denoted by

U � L0. If A ⊆ dom(U), (U,A) indicates the expansion of U with the elements of A.

Every a ∈ A is intended as a constant and interpreted by itself (i.e. a(U,A) = a). If

U is a structure over L and S 6∈ L a symbol, we use the notation (U, (S : F )) for the

structure V over L ∪ {S} with V � L = U and SV = F . A structure U over L where

every element of its domain is the interpretation in U of a term in L without variables

is called canonical.

Let U, V be structures over the set L of relation symbols or constants. A homomor-

phism from V to U is a mapping f: dom(V )→ dom(U) that satisfies for all constants

c∈ L, all relation symbols R ∈ L and all v0, . . . , vνR−1 ∈ dom(V )

cU = f(cV );

if RV (v0, . . . , vνR−1), then RU(f(v0), . . . , f(vνR−1)).

A homomorphism f from V to U that satisfies for all relation symbols R ∈ L and all

v0, . . . , vn−1 ∈ dom(V )

RV (v0, . . . , vνR−1), if RU(f(v0), . . . , f(vνR−1))

is called strict. An embedding of (or from) V into U is a strict, injective homomorphism

from V to U . An embedding from V into U that is surjective to dom(U) is called an
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isomorphism from V to U . V is said to be embedded into U respectively isomorphic to

U , written V ∼= U , if there is an embedding of V into U respectively an isomorphism

from V to U . V is called a substructure of U (or contained in U) or U an extension of

V (or extending V ), written V ⊆ U or U ⊇ V , iff the identity function iddom(V ) is an

embedding from V into U . If U is canonical and there is a homomorphism f from U

to V , then f is unique and denoted by e
U,V

.

Let L be a set of relation symbols and U, V structures over L.

If ∅ 6= A ⊆ dom(U), the substructure of U whose domain is A is denoted by U |A. We

define U |∅ = ∅. A partial isomorphism from V to U is either the empty function ∅ or an

embedding from a substructure of V into U . For an injective f: dom(V )→ dom(U), the

U-extension of V by f is the structureW over L with dom(W ) = dom(U), into which f is

an embedding from V , satisfying for all R ∈ L and all u0, . . . , uνR−1 ∈ dom(U)νR\rg(f)νR

RW (u0, . . . , uνR−1) iff RU(u0, . . . , uνR−1).

Let U be a non-empty set of structures over L with pairwise disjoint domains (i.e.

dom(U) ∩ dom(V ) = ∅ for distinct U, V ∈ U). The sum
∑
U of U is defined to be the

structure U over L with dom(U) =
⋃
{ dom(V ) | V ∈ G} satisfying for all R ∈ L and all

u0, . . . , uνR−1 ∈ dom(U):

(i) For all V ∈ U , if u0, . . . , uνR−1 ∈ dom(V ),

RU(u0, . . . , uνR−1) iff RV (u0, . . . , uνR−1).
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(ii) If {u0, . . . , uνR−1} 6⊆ dom(V ) for all V ∈ U ,

not RU(u0, . . . , uνR−1).

∑
U is written also U⊕V , if U = {U, V } (thus U⊕U = U). We define ∅⊕U = U⊕∅ = U .

For a structure U over L we call A ⊆ dom(U) closed in U iff U = U |A⊕U |(dom(U)\

A). A closed substructure of U is a substructure of U whose domain is closed in U .

Let U be a class of structures over L. A combination set of U is a set V 6= ∅ of

structures over L with pairwise disjoint domains satisfying the condition that every

V ∈ V is isomorphic to some U ∈ U . A combination of U is a sum
∑
V for some

combination set V of U . Said differently, a combination of U is the sum of a non-

empty set of pairwise disjoint isomorphic copies of elements of U . We denote the class

of all combinations of U by cmb(U). A combination of a structure U over L is just a

combination of {U}. If in the definition of a combination of U we add the requirement

that |V| = m ∈ N, we call
∑
V an m-combination of U . A finite-combination of U is an

m-combination of U for some m ∈ N.

A combination function over U is a function α with U ⊆ dom(α), α(U) a cardinal

number for all U ∈ U and α(U) = α(V ) for all U ∼= V in U . Let α be a combination

function over U . A combination set of U with coefficients α is a combination set V of

U such that |{V ∈ V | V ∼= U}| = α(U) for every U ∈ U . A combination of U with

coefficients α is a sum
∑
V for a combination set V of U with coefficients α. Obviously

any two combinations of U with coefficients α are isomorphic. If β is a combination
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function over U , we call a combination of U with coefficients α a combination of U with

coefficients ≤ β iff α(U) ≤ β(U) for all U ∈ U .

|= denotes the semantical satisfaction relation between a class of structures and a

formula. If C is a class of structures over the set L of symbols, the set of all sentences in

L that hold in all structures in C is called the theory of C and denoted by Th(C). If C is

empty, L is not uniquely determined. In this trivial case L will simply be the underlying

set of symbols, in the realm of which we are situated. The class of all structures over

L that satisfy a set T of (first-order) sentences in L, also called a (first-order) theory in

L, is denoted by modL(T). For a sentence ψ in L it will be safe for us to abbreviate

modL({ψ}) by modL(ψ). A theory T in L axiomatizes a class C of structures over L iff

C = modL(T). A sentence ψ in L axiomatizes C iff C = modL(ψ). If T′ is a theory in L,

we write that T or ψ axiomatizes T′ instead of modL(T′). C is axiomatizable iff there is

a (first-order) theory in L that axiomatizes C.

We might need the next definition, too. A theory in L axiomatizes in the finite a

class C of structures over L iff C is the class of all finite models over L of the theory. We

denote by Cf the class of all finite structures in C.

The structures U, V over the set L of symbols are elementarily equivalent, U ≡ V ,

iff they satisfy the same sentences in L, or, said differently, iff Th(U) = Th(V ) (Th(U)

is short for Th({U})). U, V are m-equivalent, U ≡m V , iff they satisfy the same

sentences in L of quantifier rank m ∈ N. In Chapter 6 we will refine the following

definition of k,m-equivalence (k,m ∈ N). U, V are k,m-equivalent, U ≡k,m V , iff for
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all u0, . . . , uk−1 ∈ dom(U) there are v0, . . . , vk−1 ∈ dom(V ) and vice versa such that

U, (ci:ui)0≤i<k ≡m V, (ci:vi)0≤i<k (c0, . . . , ck−1 constants). We notice immediately that,

if L is finite, because of Ehrenfeucht’s Theorem, U, V are 1,m-equivalent iff they are

m+ 1-equivalent and that, if they are m+ k-equivalent, then they are k,m-equivalent.

The second conclusion can be also proven simply by using the m-Hintikka formulas in

L [2] [5].

An embedding f from V into U is called elementary iff (V, dom(V )) ≡ (U, (v :

f(v))v∈dom(V )). V is an elementary substructure of U or U an elementary extension

of V , written V � U or U � V , iff iddom(V ) is an elementary embedding from V into U .

U is i-sandwiched by V (i ≥ 1) iff there are structures U0, . . . , Ui−1 over L with

V ⊆ U0 ⊆ . . . ⊆ Ui−1,

U is elementarily embedded into U0,

Uj � Uj+2 (0 ≤ j < i− 2) and

V � U1, if i ≥ 2.

U is i-filled with V iff V is i-sandwiched by U . A class of structures over L is preserved

under i-sandwiches iff for all structures U, V over L, if U is in the class and U is i-

sandwiched by V , then V is in the class. It is preserved under i-fillings iff for all

structures U, V over L, if U is in the class and U is i-filled with V , then V is in the class.

Let α be an ordinal and Uγ a structure over L for all ordinals γ < α. We call (Uγ)γ<α

a chain of structures iff Uγ ⊆ Uδ for all ordinals γ ≤ δ < α. We assume the well known

definition of the union
⋃

(Uγ)γ<α of a chain (Uγ)γ<α of structures (if needed, see for
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example [1]). A class C of structures over L is preserved under chains iff, for all chains

(Uγ)γ<α of structures with Uγ ∈ C for all ordinals γ < α, the union of (Uγ)γ<α is in C.

The (primitive) type ∆U,u of the k-sequence u to dom(U) in the structure U over

the set L of relation symbols or constants is the conjunction of all atomic or negated

atomic formulas ξ(x0, . . . , xk−1) in L with U |= ξ[u]. A (primitive) k-type of U is the

type of some k-sequence u to dom(U) in U . A (primitive) k-type of L is a k-type of

some structure W over L. If U is finite, we denote by ∆U , for a surjective k-sequence u

to dom(U), the sentence ∃y0 . . . ∃yk−1∆U,u.

We assume a basic familiarity with recursion theory, computation and Turing ma-

chines [6], [7]. An alphabet is defined to be finite. Let Σ be an alphabet and w, v

be in the set Σ∗ of all words over Σ. |w|Σ is the length of w (with respect to Σ). w

is a subword (with respect to Σ) of v iff v = swt for some s, t ∈ Σ∗ (sw denotes the

concatenation of s, w). A problem (in Σ) is for some A ⊆ Σ∗ the question, given a word

over Σ, whether the word is in A or not. A problem is solvable iff there is a procedure

(or, equivalently, a Turing machine) that computes the (correct) answer, yes or no. A

class of finite structures over a finite set of symbols is decidable iff the set of all struc-

tures with domain {0, . . . , n} (n ∈ N) that are isomorphic to a structure in the class is

decidable.

We define the words πi, σi (i ∈ N) over the 2-letter alphabet {∀∗,∃∗} in the following

way:

π0, σ0 are the empty word. πi+1 = ∀∗σi, σi+1 = ∃∗πi (i ∈ N).
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Let S be a set of symbols. We denote by ΠS
i respectively ΣS

i the set of all prenex

sentences in S with a prefix type πi respectively σi, where ∀∗ respectively ∃∗ means any

word over {∀} respectively {∃}.

1.1 Equivalence relations

The equivalence relation≡k,r,m, weaker than≡r,m, will play an important role later in the

Chapters 6 and 7. For its investigation we will use several definitions and propositions

regarding equivalence relations in general. These definitions and propositions are the

subject of this section.

As usual an equivalence relation over the set A is a 2-placed relation Q over A such

that A = ∅ or the structure (A, S:Q) (S 2-placed relation symbols) satisfies

∀xyz(Sxx ∧ (Sxy → Syx) ∧ ((Sxy ∧ Syz)→ Sxz)).

Let Q be an equivalence relation over the set A. A/Q denotes the set of all equivalence

classes Ca (of a) (a ∈ A) modulo Q, where Ca is the set of all b ∈ A with Q(a, b). For

B ⊆ A and i ∈ N we denote by < B >A
i,Q the union of B and the set of all a ∈ A that

have Q with > i elements in B. Q is finer (over A) than the equivalence relation R

over A iff Q(a, b) implies R(a, b) for all a, b ∈ A. B,C ⊆ A are called Q-equivalent iff

the same Q types belong to them or, written more properly, iff for every a ∈ B there is

b ∈ C with Q(a, b) and vice versa.
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Proposition 1.1 B,C ⊆ A are Q-equivalent iff for all choice sets D,E of B/Q respec-

tively C/Q there is a bijection F from D to E with Q(F (a), a) for all a ∈ D.

Proof Obvious. ♦

This book will often deal with equivalence relations over classes, like ∼= or ≡. The

definitions referring to them can be easily acquired from the definitions given above,

referring to an equivalence relation over a set, but the reader should be aware of the

fact that the definitions above of an equivalence relation Q over A and of A/Q are not

correct, if A is a class and not a set.

Let L be a set of relation symbols, U a set of structures over L and E be an equivalence

relation over the class Ū of all structures isomorphic to a structure in U with the property

that ∼= is finer than E. If V ⊆ Ū is a set and U ∈ U we define

αVE,U(U) = |{V ∈ V |E(V, U)}|.

Clearly αVE,U is a combination function over U .

The m-sequence Q of equivalence relations over A (m ∈ N) is called increasing (over

A) iff Qi is finer (over A) than Qj for all 0 ≤ i ≤ j < m. If Q is an increasing m-sequence

of equivalence relations over A and 0 ≤ i ≤ m, we call the i-sequence B a Q-choice of A

iff Bj is a choice set of (A \ <
⋃

0≤k<j Bk >
A
j,Qj

)/Qj for all 0 ≤ j < i , B a full Q-choice

of A iff B is a Q-choice of A and i = m and, finally
⋃

rg(B) a Q-contraction of A, for

any full Q-choice B of A.
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Until Proposition 1.4 let m ∈ N, Q be an increasing m-sequence of equivalence

relations over A, B ⊆ A, 0 ≤ i ≤ m and the i-sequence C be a Q-choice of B.

Proposition 1.2

(a) Assume that there is an injective F from B to A with Q0(F (a), a) for all a ∈ B.

Then (F (Cj))0≤j<i is a Q-choice of F (B).

(b) Assume that
⋃

rg(C) ⊆ E ⊆ B. Then C is a Q-choice of E.

(c) For all a ∈ B and all 0 ≤ j < i all or > j elements b ∈ B having Qj with a are in⋃
0≤k≤j Ck.

(d) For all a ∈ A the number of elements in
⋃

rg(C) having Q0 with a is ≤ i.

(e)

|
⋃

rg(C)| ≤
i∑

j=0

|B/Qj| ≤ i|B/Q0|.

(f) Let Q̄ be an increasing m-sequence of equivalence relations over B such that Qj is

finer than Q̄j for all 0 ≤ j < m. For some i-sequence D that is a Q̄-choice of B

we have that Dj ⊆ Cj for all 0 ≤ j < i.

Proof. These six statements can be easily proven by induction on the length i of the

sequence. ♦

Proposition 1.3 Let B ⊆ E ⊆ A and the i-sequence D be a Q-choice of E. There is

an injective F :
⋃

rg(C) →
⋃

rg(D) such that Qj(F (a), a) and F (Cj) ⊆
⋃

0≤k≤j Dk for

all 0 ≤ j < i and all a ∈ Cj.
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Proof. The claim holds for i = 0. In the induction step assume it holds for i = n.

We show its validity for i = n + 1. By induction hypothesis there is an injective

G :
⋃

0≤j<nCj →
⋃

0≤j<nDj such that Qj(G(a), a) and G(Cj) ⊆
⋃

0≤k≤j Dk for all

0 ≤ j < n and all a ∈ Cj. We extend G to a function F as in the thesis. Assume

a ∈ Cn. Then a ∈ B \
⋃

0≤j<nCj and there are k ≤ n elements in
⋃

0≤j<nCj having

Qn with a. Because of G there are k̄ ≥ k elements in
⋃

0≤j<nDj having Qn with a. If

k̄ > k, there is b ∈
⋃

0≤j<nDj \ rg(G) with Qn(a, b) and we set F (a) = b. If k̄ = k, there

is b ∈ E \
⋃

0≤j<nDj with Qn(a, b), whence c ∈ Dn with Qn(a, c) and we set F (a) = c.

Since Cn is a choice set of a set of equivalence classes of Qn, F is injective. ♦

Corollary 1.1 Let the i-sequence D be a Q-choice of B. There is a bijection F :⋃
rg(C) →

⋃
rg(D) such that Qj(F (a), a) and F (Cj) = Dj for all 0 ≤ j < i and

all a ∈ Cj.

Proof. By Proposition 1.3, since B ⊆ B, there is an injective F :
⋃

rg(C) →
⋃

rg(D)

such that Qj(F (a), a) and F (Cj) ⊆
⋃

0≤k≤j Dk for all 0 ≤ j < i and all a ∈ Cj and an

injective G :
⋃

rg(D) →
⋃

rg(C) such that Qj(G(a), a) and G(Dj) ⊆
⋃

0≤k≤j Ck for all

0 ≤ j < i and all a ∈ Dj. By induction, assume F (Ck) = Dk and G(Dk) = Ck for all

0 ≤ k < j < i. Then F (Cj) ⊆ Dj and, since the elements of Cj pairwise do not have

Qj, G ◦ F (Cj) = Cj. Therefore F (Cj) = Dj and G(Dj) = Cj. ♦

Corollary 1.2 Any two Q-contractions of B have the same cardinality.

Proof. Immediate. ♦
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Corollary 1.3 Assume that i > 0 and that the i-sequence D is a Q-choice of B. Then

there is a bijection F from B to B with F (
⋃

rg(C)) =
⋃

rg(D) and Qi−1(F (a), a) for

all a ∈ B.

Proof. Left to the reader. ♦

Corollary 1.4 Let the i-sequence D be a Q-choice of
⋃

rg(C).
⋃

rg(C) =
⋃

rg(D).

Proof. By Proposition 1.2 (b) C is a Q-choice of
⋃

rg(C). By Corollary 1.3 there is a

bijection F from
⋃

rg(C) to
⋃

rg(C) with F (
⋃

rg(C)) =
⋃

rg(D), whence
⋃

rg(C) =⋃
rg(D). ♦

Corollary 1.5 Let D be a Q-contraction of B. D = E for every Q-contraction E of D.

Proof. Immediate from Corollary 1.4. ♦

The converse of Corollary 1.1 is true, too.

Proposition 1.4 If F is an injective function from
⋃

rg(C) to B such that Qj(F (a), a)

for all 0 ≤ j < i and all a ∈ Cj, then (F (Cj))0≤j<i is a Q-choice of B.

Proof. Induction over i. ♦

Let again m ∈ N, 0 ≤ i ≤ m and Q respectively R be an increasing m- respectively i-

sequence of equivalence relations over the set A such that Qj is finer than Rj (0 ≤ j < i).

Corollary 1.6 Every Q-contraction of A includes an R-contraction of A.
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2 n-multigraphs

Chapter 2 introduces and examines n-multigraphs, which are the structures that essen-

tially this book is about, under the aspects that are relevant for this work: the degree

and the neighbourhood of their points. The results presented in this chapter belong to,

or straightforwardly follow from, the ground knowledge in graph theory and topology.

For this reason the proofs are often kept short and sometimes omitted. These results

will be used for showing both the solvability and the unsolvability of the problems in

the later chapters.

The multigraph symbols, that will also be used in later chapters, are the 2-placed

relation symbols R1, R2, . . . (indeed, Ri 6= Rj for i 6= j). Let n ∈ N. Sn denotes the set

{R1, . . . , Rn} (of multigraph symbols) and Tn the first-order theory in Sn:

{ ∀xy
∧

1≤i<j≤n

(Rixy → ¬Rjxy), ∀xy
∧

1≤i≤n

(Rixy → Riyx) }.

An n-multigraph is a structure G over Sn satisfying the following two conditions:

(i) For all a, b ∈ dom(G) there is at most one 1 ≤ i ≤ n with RG
i (a, b). The valence

(or multiplicity), val
G

(a, b), of a, b in G is i, if 1 ≤ i ≤ n and RG
i (a, b); it is 0, if

there is no 1 ≤ i ≤ n with RG
i (a, b).

(ii) Every RG
i (1 ≤ i ≤ n) is symmetric (over dom(G)), i. e.

G |= ∀xy(Rixy → Riyx).
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Hence an n-multigraph is a structure over Sn that is a model of Tn. An n-multigraph

G is called m-bound iff val
G

(a, b) ≤ m for all a 6= b in dom(G) (m ∈ N). Notice that a

graph in the usual meaning is an irreflexive 1-multigraph.

2.1 Degree of an element

Let n ∈ N. The degree of a in the n-multigraph G, deg
G

(a), is defined by

deg
G

(a) =


∑

b∈dom(G)\{a}
val

G
(a,b)6=0

val
G

(a, b), if {b ∈ dom(G) | val
G

(a, b) 6= 0} is finite;

∞, otherwise;

for all a ∈ dom(G). deg
G

is regarded as a function whose domain is dom(G). G is said

to be of finite degree iff deg
G

(a) 6= ∞ for every a ∈ dom(G). G is of degree k iff k is

the highest degree in G of an element of dom(G) (∞ is by definition greater than any

n ∈ N). The n-multigraphs G,H are said to be similar iff they have the same domain

and for all a ∈ dom(G)

deg
G

(a) = deg
H

(a) and val
G

(a, a) = val
H

(a, a).

d : A → {0, . . . , n} is called a degree function iff A = ∅ or there is an n-multigraph G

with deg
G

= d. Notice that if d : A→ {0, . . . ,m} (m ∈ N), then there is an n-multigraph

G with deg
G

= d iff there is an m-multigraph G with deg
G

= d.

Suppose that d : A→ {0, . . . , n} for some finite set A 6= ∅ and set

∆ = (
∑

b∈A\{a}

d(b)) − d(a)

with a ∈ A such that d(a) ≥ d(b) for all b ∈ A.
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∧((x 6= y 6= z 6= w 6= x 6= z ∧ y 6= w ∧R1xy ∧R1xz)→
∧

1≤i≤n¬Rixw)).

Let Ωn
i (x) (n, i ∈ N) be an existential formula in Sn with i quantifiers such that

G |= Ωn
i [a] iff deg

G
(a) ≥ i

for all n-multigraphs G and all a ∈ dom(G).

Then the formula Ξn
i = (Θn

i ∧ Ωn
i ) means in any n-multigraph G that x has degree

i. Notice that Ξn
i is not the most economical way to express the above meaning. For

example

∃yz∀w(x 6= y ∧ x 6= z ∧ ((y = z ∧R2xy) ∨ ((y 6= z ∧R1xy ∧R1xz))

∧(y 6= w 6= z →
∧

1≤i≤n¬Rixw))

is equivalent in every n-multigraph (n ≥ 2) to Ξn
2 .

For d : {0, . . . , n} → N let Td be the theory

Tn ∪ {∀x(Rixx→ Ξn
d(i)) | 0 < i ≤ n} ∪ {∀x(

∧
1≤i≤n

¬Rixx→ Ξn
d(0))}.

Then Td axiomatizes the class of n-multigraphs with degree requirement d (i. e. the

class of models of Td over Sn is the class of n-multigraphs with degree requirement d).

2.2 Neighbourhoods

The neighbourhood, nb
G

(A), of A ⊆ dom(G) in the n-multigraph G is the set

A ∪ {b ∈ dom (G) | there is a ∈ A with val
G

(a, b) 6= 0}.
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The k-neighbourhood, nbk
G

(A), and the closure, cl
G

(A), of A in G are given by

nb0
G

(A) = A;

nb(k+1)
G

(A) = nb
G

(nbk
G

(A)).

cl
G

(A) =
⋃
{nbk

G
(A) | k ∈ N}.

Disregarding the risk of ambiguity, nb
G

(A), nbk
G

(A) and cl
G

(A) are simply written

nb
G

(a), nbk
G

(a) and cl
G

(a) for A = {a}. A component of G is the closure cl
G

(a) in

G of an element a ∈ dom(G). Obviously nb
G

(A) = nb1
G

(A).

Proposition 2.3 (a) nbk
G

(A) =
⋃
{nbk

G
(a) | a ∈ A} (A ⊆ dom(G)).

(b) nbk
G

(
⋃
A) =

⋃
{nbk

G
(A) | A ∈ A} for every set A of subsets of dom(G).

(c) For all a, b ∈ dom(G)

a ∈ nbk
G

(b) iff b ∈ nbk
G

(a).

Proof. (a) can be verified by induction. (b) is a set theoretical consequence of (a). (c)

It suffices to prove that if a ∈ nbk
G

(b), then b ∈ nbk
G

(a). It is straightforward to shown

that the following two statements hold:

(1) a ∈ nb
G

(b) iff b ∈ nb
G

(a).

(2) nb
G

(nbk
G

(A)) = nbk
G

(nb
G

(A)) (A ⊆ dom(G)).

Now the prove is by induction, the case k = 0 being immediate. For the induction step

let a ∈ nbk+1
G

(b). Then a ∈ nb
G

(c) for some c ∈ nbk
G

(b). By induction hypothesis and

by (1), b ∈ nbk
G

(c) for some c ∈ nb
G

(a). Using (a) we obtain b ∈ nbk
G

(nb
G

(a)). Now (2)

yields b ∈ nbk+1
G

(a). ♦
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Proposition 2.8 Suppose A ⊆ dom(H) and deg
G

(a) ∈ N for all a ∈ A. Then

deg
G

(a) = deg
H

(a) for all a ∈ A iff nb
G

(A) = nb
H

(A).

Proof. ⇐. Since deg
K

(b) = deg
K| nbK (B)

(b) for all n-multigraphs K, B ⊆ dom(K) and

b ∈ B, the right side implies the left one. ⇒. Suppose deg
G

(a) = deg
H

(a) for all a ∈ A.

For all a ∈ A

deg
G

(a) = deg
H

(a) +
∑

b∈dom(G)\dom(H)

val
G

(a,b)6=0

val
G

(a, b).

Hence the right summand is 0. This equality implies nb
G

(A) ⊆ dom(H). Proposi-

tion 2.6(b) yields nb
G

(A) = nb
H

(A). ♦

2.3 Closed subsets

Let G be an n-multigraph and A ⊆ dom(G). A is said to be k-closed in G iff cl
G

(A) =

nbk
G

(A) and closed in G iff it is 0-closed in G (i. e. cl
G

(A) = A). H is a closed substructure

of G iff H ⊆ G and dom(H) is closed in G. The following proposition is easy to prove.

Proposition 2.9 A is closed in G iff nb
G

(A) = A. ♦

Proposition 2.9 implies that the definition of closed subset in this section is consistent

with the definition given in Chapter 1, referring to arbitrary structures over sets of

relation symbols.

From Proposition 2.9 and 2.3(b) it follows easily that cl
G

(A) (A ⊆ dom(G)) is closed

in G and, from Corollary 2.1(a), that it is the smallest (with respect to ⊆) B ⊆ dom(G)
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closed in G, containing A. Proposition 2.4(b) yields now that the components of G are

precisely the minimal non-empty subsets of dom(G) closed in G. The next proposition

is given without proof.

Proposition 2.10 A set is closed in G iff it is a closed (or open) set in the topology

for which the set of all components of G is a basis. ♦

Proposition 2.11 Suppose that deg
G

(a) ∈ N for all a ∈ A. A is closed in G iff

deg
G|A

(a) = deg
G

(a) for all a ∈ A.

Proof. Easy with Proposition 2.9 and 2.8, given that nb
G|A(A) = A. ♦

Let again G be an n-multigraph and B ⊆ A ⊆ dom(G). Proposition 2.11 implies

the next corollary.

Corollary 2.2 If d : {0, . . . , n} → N, H is an n-multigraph and G,H have both degree

requirement d, then H ⊆ G iff H is a closed substructure of G. ♦

Proposition 2.12 Assume that A is closed in G and B is closed in G|A. Then B is

closed in G.

Proof. By Proposition 2.9 and 2.6(a) nb
G

(B) ⊆ nb
G

(A) = A. Therefore, with Propo-

sition 2.5 and 2.9, nb
G

(B) = nb
G

(B) ∩ A = nb
G|A(B) = B. Hence, again by Proposi-

tion 2.9, B is closed in G. ♦

We will be interested in knowing whether there is an n-multigraph H similar to G in

which A is closed. Obviously, from Proposition 2.9, if deg
G

(a) ≤ n for all a ∈ dom(G),
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this is the case iff both deg
G
|A and deg

G
| (dom(G) \A) are degree functions. Moreover,

if G is finite and deg
G
|A is a degree function,

∑
a∈dom(G)\A deg

G
(a) is even. Hence we

obtain from Proposition 2.1:

Corollary 2.3 If G is finite of degree ≤ n , deg
G
|A is a degree function and

| {a ∈ dom(G) \ A | deg
G

(a) ≥ 1} | > n,

then there is an n-multigraph H similar to G in which A is closed. ♦

2.4 Connected n-multigraphs

An n-multigraph is called connected iff it has exactly one component. That component

A must be the domain, for, if there would be a 6∈ A in the domain, its closure would be

different from A. Let G be an n-multigraph. We can immediately conclude that, if G

is connected, cl
G

(a) = dom(G) for all a ∈ dom(G).

Proposition 2.13 G is connected iff cl
G

(a) = dom(G) for some a ∈ dom(G).

Proof. ⇒ follows directly from the conclusion above. ⇐ follows easily from Proposi-

tion 2.4(b). ♦

Proposition 2.14 The restriction of G to any of its component is connected.

Proof. Let a ∈ dom(G) and set H = G|cl
G

(a). By Corollary 2.1(b) with A = B = {a},

dom(H) = cl
G

(a) = cl
H

(a). With Proposition 2.13 H is connected. ♦
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Proposition 2.18 There is a ∈ A \ B for which H ′ = G|(B ∪ {a}) is connected.

Therefore there is an injective |A|-sequence u to A for which G|{ui | i < k} is connected

for all 0 < k ≤ |A|.

Proof. There is a ∈ A \ B with a ∈ nb
G

(B), otherwise both B and A \ B would be

closed in G, by Proposition 2.9, contradicting the connectivity of G, since, given the

discussion following Proposition 2.9, they would each include a component. Because H

is finite and connected, there are k ∈ N, b ∈ B with B = cl
H

(b) = nbk
H

(b). Therefore

dom(H ′) = nbk+1

H′
(b) = cl

H′
(b). ♦

2.5 Gaifman graph and sum of structures

Let U be a structure over a set L of relation symbols. The Gaifman graph gf(U) of U is

the 1-multigraph with domain dom(U) and in which R1 holds exactly for all (a, b) with

a 6= b for which there are R ∈ L and u0, . . . , uνR−1 ∈ dom(U) such that RU(u0, . . . , uνR−1)

and a, b ∈ {u0, . . . , uνR−1}. The Gaifman graph of a structure is obviously a graph in

the usual meaning. For u ∈ dom(U) we define deg
U

(u) = deg
gf(U)

(u). U is of finite

degree iff gf(U) is of finite degree. A component of U is a component of gf(U). U is

called connected iff gf(U) is connected. The following two propositions are immediate.

Proposition 2.19 If V ⊆ U , then id
dom(V )

is a homomorphism from gf(V ) to gf(U). ♦

Proposition 2.20 A ⊆ dom(U) is closed in U iff it is closed in gf(U). ♦
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Proposition 2.21 (a) Assume that V ⊆ U and dom(V ) is closed in U . Then gf(V ) =

gf(U)|dom(V ).

(b) Assume that V ⊆ U and every symbol in L is 1- or 2-placed. Then gf(V ) =

gf(U)|dom(V ).

(c) If V is connected and V ⊆ U , then H := gf(U)|dom(V ) is connected.

(d) Let j, k ∈ N, j ≤ k,A ⊆ dom(U) and V = U |nbk
gf(U)

(A). nbj
gf(U)

(A) = nbj
gf(V )

(A).

(e) If W ⊆ U is connected, then V := U |nb
gf(U)

(dom(W )) is connected.

Proof. (a) Suppose a, b ∈ dom(V ) and R
gf(U)
1 (a, b). Then there are R ∈ L and

u0, . . . , uνR−1 ∈ dom(U) such that RU(u0, . . . , uνR−1) and a, b ∈ {u0, . . . , uνR−1}. Since

dom(V ) is closed in gf(U), u0, . . . , uνR−1 ∈ dom(V ). Hence R
gf(V )
1 (a, b).

(b) For all a, b ∈ dom(V )

R
gf(V )
1 (a, b) iff a 6= b and QV (a, b) or QV (b, a) for a 2-placed relation symbol Q ∈ L

iff a 6= b and QU(a, b) or QU(b, a) for a 2-placed relation symbol Q ∈ L

iff R
gf(U)
1 (a, b).

(c) There is c ∈ dom(V ) with dom(V ) = cl
gf(V )

(c) and for all a, b ∈ dom(V ) we have

RH
1 (a, b), if R

gf(V )
1 (a, b). With Proposition 2.7 dom(V ) = cl

gf(V )
(c) ⊆ cl

H
(c) ⊆ dom(V ).

(d) Since V ⊆ U , by Proposition 2.19 and Proposition 2.7, nbj
gf(V )

(A) ⊆ nbj
gf(U)

(A).

We show by induction on j that nbj
gf(U)

(A) ⊆ nbj
gf(V )

(A). The claim clearly holds for

j = 0. Assume it holds for j < k and let v ∈ nbj+1

gf(U)
(A) \ nbj

gf(U)
(A). Then there is
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for all structures U and all u ∈ dom(U). Then the formula ΞL
i = (ΘL

i ∧ ΩL
i ) means in

any structure U over L that x has degree i.

Let U a set of connected structures over L of cardinality at most l. If U = ∅, set

ϑU to be the false sentence. If U 6= ∅, let U be a combination of U such that for every

V ∈ U there are precisely l components A of U with U |A ∼= V and set

ϑU = ∀x0 . . . xl+m−1

∨
u=u0,...,ul+m−1∈dom(U)

(∆U,u ∧ ΞL
degU (u0)(x0) ∧ . . . ∧ ΞL

degU (ul−1)(xl−1)).

Proposition 2.30 ϑU is logically equivalent to a universal-existential sentence and ax-

iomatizes the class of all combinations of U .

Proof. For any structure U over L we have

V |= ϑU iff

for every at most l-element W ⊆ V there is an embedding f of W into U

with deg
V

(v) = deg
U

(f(v)) for all v ∈ dom(W ) iff (by Corollary 2.4)

every restriction of V to a component is isomorphic to the restriction of U

to a component iff

V is a combination of U . ♦

2.6 A-homomorphisms

Let G,H be n-multigraphs and A ⊆ dom(G). A weak A-homomorphism from G to

H is a homomorphism f from G|nb
G

(A) to H such that f(nb
G

(u)) = nb
H

(f(u)) for
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all u ∈ A. Assume that f is a weak A-homomorphism from G to H and u ∈ A with

deg
G

(u) = deg
H

(f(u)).

Proposition 2.31 f |nb
G

(u) is injective.

Proof. Let {b0, . . . , bi−1} = nb
H

(f(u)) \ {f(u)} and b0, . . . , bi−1 distinct. There are

distinct a0, . . . , ai−1 ∈ nb
G

(u) \ {u} with f(aj) = bj (0 ≤ j < i). We have deg
H

(f(u)) =∑
0≤j<i val

H
(f(u), bj) =

∑
0≤j<i val

G
(u, aj). Therefore

deg
G

(u) = deg
H

(f(u)) +
∑

v∈nb
G

(u)\{a0,...,ai−1,u}

val
G

(u, v).

Since deg
H

(f(u)) = deg
G

(u), we have

∑
v∈nb

G
(u)\{a0,...,ai−1,u}

val
G

(u, v) = 0.

Hence {a0, . . . , ai−1, u} = nb
G

(u). ♦

An A-homomorphism from G to H is a weak A-homomorphism f from G to H for

which f |A is a partial isomorphism from G to H. Let f be an A-homomorphism from

G to H and G,H have degree requirement d: {0, . . . , n} → N.

Corollary 2.5 Let a, b ∈ A, c ∈ nb
G

(a), d ∈ nb
G

(b). Suppose f(a) = f(b) and f(c) =

f(d). Then a = b and c = d.

Proof. a = b, because f |A is a partial isomorphism. Therefore c, d ∈ nb
G

(a). Proposi-

tion 2.31 implies c = d. ♦

Proposition 2.32 Let a ∈ nb
G

(A) \ A. Then f(a) 6∈ f(A).
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Hi+1 is a 1-fold shift of Hi (0 ≤ i < k). This means that H is synthesizable from G iff

H is a shift of G (i. e. a k-fold shift of G for some k ∈ N).

Let n ∈ N, G,H be n-multigraphs and S be a set of n-rules.

Proposition 3.4 If H is S-synthesizable (in k steps) from G and G ⊆ Ḡ, then the

Ḡ-extension of H by iddom(G) is S-synthesizable (in k steps) from Ḡ. Therefore, if H is

an (k-step) S-product of G, then H is an (k-step) S-product of any extension of G.

Proof. Since sh(Ḡ, a) is the Ḡ-extension of sh(G, a) by iddom(G), if G ⊆ Ḡ and a is

a 4k-sequence to dom(G), the proof is immediate from the definition of S-shift and

S-product. ♦

Corollary 3.1 Let G be a set of n-multigraphs with pairwise disjoint domains. H is an

(k-step) S-product of a combination of G iff it is an (k-step) S-product of a combination

of
∑
G. If G is finite, then H is an (k-step) S-product of a finite-combination of G iff

it is an (k-step) S-product of a finite-combination of
∑
G.

Proof. Every combination of
∑
G is a combination of G and, if G is finite, every finite-

combination of
∑
G is a finite-combination of G. Assume that H is an (k-step) S-

product of a (finite-)combination of G. Then there is a (finite) combination set H of

G such that H is an (k-step) S-product of
∑
H. Let K be a combination set of

∑
G

with cardinality |H|. Obviously,
∑
K extends a structure K isomorphic to

∑
H. A

structure H0, isomorphic to H, is an (k-step) S-product of K. By Proposition 3.4 H0 is
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Proof. The two directions of the implication are proven by induction, ⇒ on l, ⇐ on the

length of the synthesis. For ⇐ note that G is an S-shift of G for any n-multigraph G,

since S-sh(G, ∅) = G. ♦

We now take a look at the n-rules from a graph theoretical perspective.

Proposition 3.7 Let (K, u) be a 1-fold n-rule, G = sh(K, u) and C = cl
K

(u0)∪cl
K

(u2).

G = sh(K|C, u)⊕K|(dom(K) \ C) and C = cl
G

(u0) ∪ cl
G

(u2).

Proof. Since C is closed in K and u0, u1, u2, u3 ∈ C, G = sh(K|C, u)⊕K|(dom(K)\C).

We prove that C = cl
G

(u0) ∪ cl
G

(u2). Define Ci = C \ {uj | 0 ≤ j < 4 and j 6= i}

and Ki = K|Ci (0 ≤ i < 4). Then Ki = G|Ci (0 ≤ i < 4). For every b ∈ C there are

0 ≤ i < 4 and k ∈ N such that b ∈ nbk
K

(ui) and k is the smallest j ∈ N with b ∈ nbj
K

(um)

for some 0 ≤ m < 4. The proof, by induction, that b ∈ nbk
Ki

(ui) is left to the reader.

Ki = G|Ci (0 ≤ i < 4) implies b ∈ cl
G

({u0, u1, u2, u3}). Since cl
G

(u0) = cl
G

(u3) and

cl
G

(u2) = cl
G

(u1), C = cl
G

(u0) ∪ cl
G

(u2). ♦

A k-fold n-rule (K, u) is called unfragmented iff dom(K) = cl
K

({u0, . . . , u4k−1}).

Corollary 3.2 Let S be a set of 1-fold, unfragmented n-rules and G0, . . . , Gl an S-

synthesis. Assume that C ⊆ dom(G0) is closed in every Gi (0 ≤ i ≤ l). Then

G0|C, . . . , Gl|C is an S-synthesis.

Proof Suppose the thesis does not hold. By Proposition 3.7 there are 0 ≤ i ≤ l and a

4-sequence u to dom(Gi) such that Gi+1 = sh(Gi, u), Gi+1 6= Gi and u0 ∈ C, u2 6∈ C or
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u0 6∈ C, u2 ∈ C. Since C is closed in Gi, we have that u1 ∈ C, u2 6∈ C or u1 6∈ C, u2 ∈ C.

But u1 ∈ nb
Gi+1

(u2), contradicting that C is closed in Gi+1. ♦

Next we proceed with some important classifications of the n-rules based on their

graph theoretical properties. An n-addition is an unfragmented, k-fold n-rule (K, u) with

u4i+2 6∈ cl
sh(K,u0,...,u4i−1)

(u4i+1) for all 0 ≤ i < k.

Proposition 3.8 If (K, u) is a 1-fold n-addition and the 4-sequence v to dom(K) is

equivalent in K to u, then (K, v) is an n-addition, too. ♦

An n-rule is an n-elimination iff its inverse is an n-addition. Therefore, a k-fold n-

rule (K, u) is an n-elimination iff it is unfragmented and u4i+3 6∈ cl
sh(K,u0,...,u4i+3)

(u4i+2)

for all 0 ≤ i < k. In the language of graph theory an n-elimination is an unfrag-

mented n-rule (K, u) such that the set {{u4i, u4i+1}, {u4i+2, u4i+3}} of edges separates

{u4i, u4i+3} and {u4i+1, u4i+2} in gf(sh(K, u0, . . . , u4i−1)) and val
sh(K,u0,...,u4i+3)

(u4i, u4i+1)

= val
sh(K,u0,...,u4i−1)

(u4i+2, u4i+3) = 1 (0 ≤ i < k).

An n-rule that is both an n-addition and an n-elimination is called an n-substitution.

A k-fold n-rule (K, u) is called building respectively separating iff (sh(K, u0, . . . , u4i−1),

u4i, u4i+1, u4i+2, u4i+3) is not an n-elimination respectively not an n-addition for all 0 ≤

i < k. It follows immediately that if (K, u) is building, its inverse is separating and vice

versa.

Proposition 3.9 A 1-fold n-rule (K, u) is an n-addition iff there are a, b ∈ dom(K)

such that a 6∈ cl
K

(b) but a ∈ cl
sh(K,u)

(b).
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Corollary 3.6 If (K, u) is a building n-rule, every component of K is contained in a

component of sh(K, u). ♦

If (K, u) is a 1-fold, building n-rule and G = sh(K, u), cl
G

(u0) = cl
G

(u2). Therefore

Corollary 3.6 is also a corollary of Proposition 3.7.

Corollary 3.7 If (K, u) is a separating n-rule, every component of sh(K, u) is con-

tained in a component of K. ♦

An S-shift is defined on the ground of a set S of n-rules. We can increase the

expressive power for the selection of the points at which the shift can be applied by using

first-order formulas. Let ζ(x0, . . . , x4k−1) be a formula in Sn (for the sake of precision

where x4k−1 occurs free, if k > 0). The ζ-shift of the n-multigraph G, ζ-sh(G, u), at the

4l-sequence u to dom(G) is given by:

ζ-sh(G, u) = sh(G, u), if l = k and G |= ζ[u];

ζ-sh(G, u) = G, otherwise.

A ζ-shift of G is a ζ-shift of G at some 4l-sequence to dom(G). Let S be a finite set of

finite k-fold n-rules,

ζ =
∨

(K,u)∈S ∃x4k . . . ∃x4k+mK,u−1∆K,vK,u , if k > 0 and

ζ = ∃x0x0 6= x0, if k = 0,

where mK,u = |dom(K)| − |{u0, . . . , u4k−1}| and vK,u is a surjective sequence u, a to

dom(K) for some mK,u-sequence a ((K, u) ∈ S). ζ is a formula in Sn. x4k−1 occurs free

in ζ(x0, . . . , x4k−1), if k > 0 and S 6= ∅; ζ has no free variables, otherwise.
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Proposition 3.10 For all n-multigraphs G and all 4k-sequences u to dom(G)

S-sh(G, u) = ζ-sh(G, u). ♦

On the other hand we have:

Proposition 3.11 For every existential ζ(x0, . . . , x4k−1) in Sn, in which x4k−1 occurs

free in ϕ, if k > 0, there is a finite set S of finite k-fold n-rules such that for all

n-multigraphs G and all 4k-sequences u to dom(G)

S-sh(G, u) = ζ-sh(G, u).

Proof. Let ζ = ∃x4k . . . ∃x4k+m−1ξ with quantifier-free ξ(x0, . . . , x4k+m−1). Write ξ as a

disjunction of (4k +m)-types of Sn. ♦

3.2 Synthesizability problems

We denote by G the class of all structures that are finite n-multigraphs for some n ∈ N

and by R the class of all sets that, for some n ∈ N, are finite sets of finite n-rules.

If C0, C1 ⊆ G and Q ⊆ R are decidable classes (closed under isomorphism1), the

(closed) Q-synthesizability problem for C0, C1 is the question:

Given n ∈ N, a set S ∈ Q of n-rules, n-multigraphs H ∈ C0 and G ∈ C1, is

G an (closed) S-product of a combination of H?

1S, T ∈ R are isomorphic iff for some n ∈ N they are both sets of n-rules, for every P ∈ S there is

a Q ∈ T with P ∼= Q and vice versa.
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We omit C1 in the above definition, if C1 = G. As usual, in spite of a possible ambiguity,

when assigning a value to C0, C1 or Q, we write S for the class of all T ∈ R isomorphic

to S and G for the class of all H ∈ G isomorphic to G. In the case that C0 is closed

under finite combinations, by Corollary 3.1, the question can be rewritten:

Given n ∈ N, a set S ∈ Q of n-rules, a finite set H ⊆ C0 of n-multigraphs

and an n-multigraph G ∈ C1, is G an (closed) S-product of a combination

of H?

We now define the following classes:

Gd (d : {0, . . . , n} → N): class of all finite n-multigraphs with degree requirement d;

G≤d (d : {0, . . . , n} → N): class of all finite n-multigraphs G with deg
G

(a) ≤

d(val
G

(a, a)) (a ∈ dom(G));

Gdr: class of all G ∈ G that for some n ∈ N are n-multigraphs with some degree

requirement d : {0, . . . , n} → N;

Gdd: class of all G ∈ G that for some n ∈ N are n-multigraphs with some degree

requirement d : {0, . . . , n} → {0, . . . , n};

Gdb: class of all G ∈ G that for some n ∈ N are n-multigraphs with degree ≤ n;

Gm (m ∈ N): class of all m-bound G ∈ G;

Gconn: class of all connected G ∈ G;

Rm (m ∈ N): class of all S ∈ R that for some n ∈ N are a set of m-fold n-rules;

Ra,m: class of all S ∈ R that for some n ∈ N are a set of m-fold n-additions;
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Rad: class of all S ∈ R that for some n ∈ N are a set of basic n-additions;

Rvd: class of all void S ∈ R;

Rub: class of all S ∈ R whose elements are 1-fold, unfragmented and building;

Rsr: class of all S ∈ R whose elements are separating.

The following problems will be shown to be solvable:

the closed Rub-synthesizability problem for G;

the Rsr-synthesizability problem for G;

the Rad-synthesizability problem for Gdr, that will also be called basic addition prob-

lem;

the closed Rad-synthesizability problem for Gdr (as a direct consequence from the

previous solvability);

the closed Rvd-synthesizability problem for Gdb and therefore for Gdd;

the Rvd-synthesizability problem for Gdb and therefore for Gdd (we call the second

one also void synthesizability problem).

At this point we introduce the function dn : {0, . . . , n} → {1, 2} (n ≥ 2) that maps

0, 1, 2 to 1 and 3, . . . , n to 2.

The following problems will be shown to be unsolvable for a set S of at most 12-

element, 2-fold 14-additions, a finite 14-multigraph H with degree requirement d14 and

a 2-element 14-multigraph G, described in Section 5.2:

the S-synthesizability problem and, consequently, the closed S-synthesizability prob-

lem for H, Gd14 ∩ G1 ∩ Gconn;
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the S-synthesizability problem and, consequently, the closed S-synthesizability prob-

lem for Gd14 ∩ G1, G;

the Ra,m-, Rm-, closed Ra,m- and closed Rm-synthesizability problem for Gdd, if

m ≥ 2 (as an immediate consequence of any of the preceding unsolvabilities). The first

two problems are more simply called m-fold addition respectively m-fold synthesizability

problem.

Finally the following problems remain open with this book:

the R1-synthesizability problem for Gdd (1-fold synthesizability problem);

the Ra,1-synthesizability problem for Gdd (1-fold addition problem) (in the case the

preceding one is unsolvable).

3.3 The closed Rub- and the Rsr-synthesizability problem for G

Let S be a set of 1-fold, unfragmented, building n-rules and G,H be n-multigraphs.

Proposition 3.12 Assume that dom(H) ⊆ dom(G). H is a closed S-product of G iff

dom(H) is closed in G and H is S-synthesizable from G|dom(H).

Proof. ⇐ follows from Proposition 3.4. ⇒. Let G0, . . . , Gl be an S-synthesis from G and

H a closed substructure of Gl. dom(H) is the union of the components of Gl contained

in dom(H). With Corollary 3.6 dom(H) is closed in every Gi (0 ≤ i ≤ l), hence in G0.

With Corollary 3.2 G0|dom(H), . . . , Gl|dom(H) is an S-synthesis. ♦
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Corollary 3.8 H is a closed S-product of a combination of G iff it is S-synthesizable

from a combination of restrictions of G to one of its components.

Proof. Immediate from Proposition 3.12, given that G and any combination of G have,

up to isomorphism, the same restrictions to a component. ♦

Corollary 3.9 The closed Rub-synthesizability problem for G is solvable.

Proof. Immediate from Corollary 3.8. ♦

We turn now our attention to separating n-rules.

Let S be a set of separating n-rules and G a finite n-multigraph. We will obtain, up

to isomorphism, all restrictions of an n-multigraph S-synthesizable from a combination

of G to one of its components. For simplicity we assume that all n-rules in S are

unfragmented. It is not difficult to adapt the definition of Ci to the case of finite,

separating n-rules (in this case a P -shift of a k-combination, for a k-fold P ∈ S, which

is used in the definition, is not necessarily correct anymore, if P is fragmented). Define

C0 to be the set of the restrictions of G to one of its components and for all i ∈ N

Ci+1 = Ci ∪ {K | K is the isomorphism type of a restriction to a component

of a P -shift of a k-combination of Ci for a k-fold P ∈ S}.

Proposition 3.13 There is i ∈ N for which Ci+1 = Ci and Ci is the set of all isomor-

phism types of the restrictions to a component of an n-multigraph S-synthesizable from

a combination of G.
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Proof. We sketch the proof and leave the details to the reader. If (K, a) is a k-fold, sep-

arating n-rule, then cl
sh(K,a0,...,a4i−1)

(a4i) = cl
sh(K,a0,...,a4i−1)

({a4i, a4i+1, a4i+2, a4i+3}) (0 ≤

i < k). Thus, if P ∈ S is k-fold, H an n-multigraph and H̄ a P -shift of H, then

every component of H̄ is contained in a component of H and there are components

A0, . . . , Ak−1 of H such that H̄ is the sum of a P -shift of H|(A0 ∪ . . . ∪ Ak−1) and

H|dom(H) \ (A0 ∪ . . . ∪ Ak−1). ♦

Proposition 3.14 The Rsr-synthesizability problem for G is solvable.

Proof. The procedure computes i and Ci of Proposition 3.13. For any n-multigraph H,

if H is a substructure of a combination of Ci, H is an S-product of a combination of G;

otherwise, it is not. ♦

3.4 Solvability of the basic addition problem

In this section we prove the solvability of the basic addition problem. The solvability

of this problem is not obvious. It is not inherent to the nature of additions, as one

may think. To the contrary, if we just would allow 12-element, 2-fold additions, instead

of only basic additions, which are 4-element, 1-fold additions, the problem would turn

undecidable, as we will see in Chapter 5. The proof, if carried out in a formally cor-

rect way, requires, but at the same time offers a good opportunity to practice, some

elementary set theoretic calculation.

For the whole Section 3.4 let n ∈ N, d: {0, . . . , n} → N and D = max{d(0), . . . , d(n)}.
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Let G,H be n-multigraphs with degree requirement d, A ⊆ dom(G), f an A-homo-

morphism from G to H, P := (K, z) a basic n-addition and H ′ = P -sh(H, (a, b, c, d))

(a, b, c, d ∈ dom(H)). We abbreviate B = f(A), F (u) = {v ∈ nb
G

(A) | f(v) = u} (u ∈

nb
H

(B)).

Lemma 3.1 Suppose that a ∈ B and {c, d} ∩ B 6= ∅. Then f |nb
G′

(A) is an A-

homomorphism from a P -shift G′ of G to H ′.

Proof. We assume H ′ 6= H, otherwise the claim trivially holds for G′ = G. There are a′ ∈

A, b′ ∈ nb
G

(a′), c′, d′ with {c′, d′}∩A 6= ∅, d′ ∈ nb
G

(c′) such that f(a′), f(b′), f(c′), f(d′) =

a, b, c, d. It is easy to conclude that there is an embedding from (K, z) into (G, (a′, b′, c′, d′)).

Take G′ = sh(G, (a′, b′, c′, d′)). It is rather immediate that f |A is a partial isomorphism

from G′ to H ′. We prove that

nb
G′

(u) ⊆ nb
G

(u) and f(nb
G′

(u)) = nb
H′

(f(u)) for all u ∈ A. (1)

(Regarding nb
G′

(A) ⊆ nb
G

(A), as an exercise, using Proposition 3.1 and by distinguish-

ing between d′ ∈ A and c′ ∈ A, it can actually be formally proven that nb
G

(A) =

nb
G′

(A) ∪ {b′, c′}).

To begin we distinguish between u ∈ A \ {a′, b′, c′, d′} and u ∈ A ∩ {a′, b′, c′, d′}.

Assume u ∈ A \ {a′, b′, c′, d′}.

Lemma 3.2 f(u) 6∈ {a, b, c, d}.

Proof. Towards a contradiction suppose f(u) = c. Then f(u) = f(c′). Since u 6= c′ and

f |A is injective, c′ 6∈ A, whence d′ ∈ A, which yields c′ ∈ nb
G

(A)\A. By Proposition 2.32
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for all S-synthesizable H from a combination of G and all B ⊆ dom(H) with |B| = m

there are j ≤ k, an S-synthesizable K from a j-combination of G and A ⊆ dom(K)

with (K,A) neighbour equivalent to (H,B). Now, if (K,A) is neighbour equivalent to

(H,B) then, obviously, there is an A-homomorphism from K to H with f(A) = B. This

short discussion leads to the following theorem:

Theorem 3.2 The basic addition problem is solvable.

Proof. We outline a procedure that for a set S of basic n-additions (that indeed

we can assume to be finite) and finite n-multigraphs G,H, where G has degree re-

quirement d, decides whether H is an S-product of a combination of G. Let m =

max{|dom(H)|, 4}, D = max{d(0), . . . , d(n)} and M = (m·D
2

)2. The procedure finds

k ∈ N, k ≥ m with the property that for all k < i ≤ (M + 1)k every neighbour equiv-

alence type of a (K,A), where K is S-synthesizable from a i-combination of G and

|A| = m, is the type of a (J,B) where, for some j ≤ k, J is S-synthesizable from an

j-combination of G. This k exists from the short discussion leading to Theorem 3.2.

Then it checks whether H is an S-product of an i-combination of G for i ≤ k. Since all

i ≤ (M + 1)k reduce to k, by Theorem 3.1, all i ∈ N reduce to k. This proves that, if

H is an S-product of a combination of G, the check must be positive. ♦
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4 The Shift Theorem

The Shift Theorem, that is proven in this chapter, fully characterizes the shift operation.

A consequence of the Shift Theorem is the solvability of the most immediate, particular

case of the synthesizability problem.

In order to prove the theorems in this section we generalize the definition of n-

multigraph and shift.

A multigraph (respectively a natural multigraph) on the set A is a symmetric function

G: A2 → Z = {. . .− 2,−1, 0, 1, 2 . . .}, i. e. a function G: A2 → Z with G(a, b) = G(b, a)

for all a, b ∈ A (respectively a symmetric function G: A2 → N). An element of A is called

a point of the multigraph G on A. A (natural) multigraph is a (natural) multigraph

on some set.

Let G be a multigraph on A. G is said to be finite iff A is finite. If G is finite, the

number

degG(a) =
∑

b∈A\{a}

G(a, b)

is called the degree of a in G. The finite multigraphs G,H on a common set A are called

similar iff the value and the degree of any point are the same in both G and H, i.e. iff

G(a, a) = H(a, a) and degG(a) = degH(a)

for all a ∈ A.

The shift of the multigraph G on A at the distinct elements a0, a1, a2, a3 ∈ A,

sh(G, a0, a1, a2, a3), is the multigraph H on A that satisfies:
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a 6∈ {a0, . . . , am} with G(am, a) > 0. For 0 ≤ i ≤ m− 2 the values of G are

a
>0
— am

<0
— am−1

>0
— ai,

which with statement (1) implies G(a, ai) > 0. Moreover

a
>0
— am

<0
— am−2

>0
— am−1,

which again with (1) implies G(a, am−1) > 0. ♦

By Lemma 4.2 there is a circular sequence b0, b1, b2 in G. Assume G(b0, b1) > 0

(otherwise use −G). Obviously b2, b1, b0 switches and with Lemma 4.3 we conclude that

G is infinite, which is a contradiction. Hence Lemma 4.1 holds. ♦

Let n ∈ N. A natural multigraph G on A is called bound iff G(a, b) ≤ n for all a 6= b

in A.

Theorem 4.2 (Shift Theorem) Let G,H be finite, similar, natural, bound multi-

graphs. Then there is a sequence G0, . . . , Gl of natural, bound multigraphs, where G0 =

G, Gl = H and Gi+1 is a shift of Gi for all 0 ≤ i < l.

Proof. Define δ as in the proof of Theorem 4.1:

δ(G,H) =
∑

{a,b}∈[A]2

|G(a, b)−H(a, b)|.

([A]2 is the set of 2-element subsets of A.) The proof is by induction on the value of

δ(G,H). If δ(G,H) = 0, then G = H. Assume that the theorem holds, if δ(G,H) ≤ j

and let δ(G,H) = j + 1.
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5 Undecidability of the synthesizability problem

In this chapter two undecidable variations of the word problem for Semi-Thue systems

are reduced each one to a case of the synthesizability problem, which implies the un-

solvability of the two latter cases.

As in Chapter 2, Sn = {R1, . . . , Rn}. Sn is intended as an alphabet. We define

S̃n = {R3, . . . , Rn} = Sn \ {R1, R2}.

Let Σ be an alphabet and w, v be in the set Σ∗ of all words over Σ. The reversal

w̃Σ of w (with respect to Σ) is the word w written in the opposite direction (from right

to left), i. e., if w0, . . . , wi−1 ∈ Σ and w = w0 . . . wi−1, w̃Σ = wi−1wi−2 . . . w0. v is w-

oriented (with respect to Σ) iff w̃Σ is not a subword of v. If A is a set of words over Σ,

v is A-oriented (with respect to Σ) iff it is w-oriented for every w ∈ A.

A semi-Thue system (over Σ) [1] is a pair (Σ, ρ), where Σ is an alphabet and ρ

is a finite subset of (Σ∗)2. Let T = (Σ, ρ) be a semi-Thue system. If w, v ∈ Σ∗, we

call w a T -rewriting of v iff there are s, t, y, z ∈ Σ∗ such that v = syt, w = szt and

(y, z) ∈ ρ. The reflexive transitive closure over Σ∗ of the T -rewriting relation is called

the T -reduction relation. Said differently, w is a (l-step) T -reduction of v iff there is an

l + 1-sequence u to Σ∗ with u0 = v, ul = w and ui+1 is a T -rewriting of ui (0 ≤ i < l).

Denote by A the set {y | there is z with (y, z) ∈ ρ}. v ∈ Σ∗ is called T -oriented iff every

T -reduction of v is A-oriented. The word problem for T is the question:

Given v, w ∈ Σ∗ is w a T -reduction of v?
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Theorem 5.1 There are semi-Thue systems T = (Σ, ρ), I = (Σ, σ) with |Σ| = 12 and

an I-oriented w = w0w1w2w0 (w0, w1, w2 ∈ Σ) such that |y|Σ, |z|Σ ≤ 4 and |y|Σ ≥ 2

for all (y, z) ∈ ρ ∪ σ, no procedure decides for all T -oriented v ∈ Σ∗ whether the empty

word ∅ is a T -reduction of v and no procedure decides for all v ∈ Σ∗ whether v is a

I-reduction of w.

Proof. We first prove the existence of T . We follow the idea of Post to reduce the

halting problem for a Turing machine to the word problem for a semi-Thue system [3],

[2]. The theorem then follows by considering that the halting problem for a universal

Turing machine is not decidable (i. e. the set of words on which the machine halts is not

recursive) and that there is a universal Turing machine with 4 states and a 6-element

tape alphabet [7], [8]. At this point I would like to remark that the undecidability of

the word problem for a semi-Thue system has been proven also by Markov [9]. The

undecidability of the halting problem for a universal Turing machine follows from the

existence of a Turing machine with undecidable halting problem, which, in turn, follows

from the fact that every recursively enumerable set is the set accepted by a Turing

machine and that there are recursively enumerable sets that are not recursive (like the

set of logical identities or the set of finitely satisfiable sentences). The undecidability of

the halting problem for a universal Turing machine follows also from Turing’s Theorem

that the set of words Mz, where M is a Turing machine that accepts z, is not recursive

[6], [5].
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What is left now is to prove the reduction mentioned at the beginning of the proof.

To achieve this goal we first associate to a Turing machine M a semi-Thue system

T = (Σ, ρ) in such a way that, for an effective (and simple) transformation of an input

word of the Turing machine into a T -oriented word over Σ, M halts on an input word

iff w is a T -reduction of its transformation. The association is a slight modification of

Post’s association and is defined in the following way. Let M have tape alphabet Γ with

the blank 0, set of states S with s0 the start state, s1 the halt state and next move

function δ : X ⊆ Γ× S → Γ× S × {L,R}.

We set Σ = Γ ∪ S ∪ {>, |} (>, | 6∈ Γ ∪ S) and

ρ = {(q > a, bq′ >) | (a, q) ∈ X and δ(a, q) = (b, q′, R)}∪

{(cq > a, q′ > cb) | c ∈ Γ, (a, q) ∈ X and δ(a, q) = (b, q′, L)}∪

{(|q >, |0q >) | q ∈ S} ∪ {(q > |, q > 0|) | q ∈ S}∪

{(s1 > a, s1 >) | a ∈ Γ} ∪ {(as1 >, s1 >) | a ∈ Γ} ∪ {(|s1 > |, ∅)}.

The pairs in the third line are added to allow the tape to be endless on both side, the

pairs in the last line to make the empty word the unique accepting word. It is left to

the reader to ascertain that ∅ is a T -reduction of the T -oriented |s0 > z| iff M halts on

the input word z of M .

The existence of I is proven by taking σ = {(y, z) | (z, y) ∈ ρ and y 6= ∅} and

w = |s1 > |. ♦

A word n-multigraph (n 6= 0) is a 1-bound n-multigraph G with dom(G) = {0, . . . , k}
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(k ∈ N) such that for all 0 ≤ i < j ≤ k

if j = i+ 1, RG
1 (i, j);

if j 6= i+ 1, val
G

(i, j) = 0.

If G is a k-element word n-multigraph and 0 ≤ i ≤ n, the i-termination of G is the

(k + 1)-element word n-multigraph H ⊇ G with val
H

(k, k) = i.

5.1 Word representations

For this whole section let n ∈ N, n ≥ 2.

Let v0, . . . , vi−1 ∈ Sn, v = v0 . . . vi−1. For i > 0 the natural n-representation of v,

nrpn(v), is the i-element word n-multigraph G satisfying vGj (j, j) (0 ≤ j < i). The

second (respectively third) n-representation of v, srpn(v) (respectively trpn(v)), is the

0-termination of the i+ 1-element word n-multigraph G satisfying

vGj (j + 1, j + 1) (0 ≤ j < i) and

RG
1 (0, 0) (respectively RG

2 (0, 0)).

Obviously, if w ∈ S̃
∗
n, |w|S̃n ≥ 1 and nrpn(w) is embedded into nrpn(v) (|v|Sn ≥ 1),

srpn(v) or trpn(v), then w or w̃ is a subword of v. Consequently, if v is w-oriented, then

nrpn(w) is embedded into nrpn(v) iff w is a subword of v.

Proposition 5.1 srpn(v) and trpn(v) are in Gdn for all v ∈ S̃
∗
n.

Proof. Left to the reader. The function dn was introduced in section 3.2. ♦
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A second (third) n-representation is an n-multigraph isomorphic to srpn(v) (trpn(v))

for some v ∈ S̃
∗
n. An n-representation is a combination of the class of all second or third

n-representations.

If G = srpn(v) (or G = trpn(v)) and |G| = i + 2, then nbj
G

(0) = {0, . . . , j} (0 ≤ j ≤

i+ 1), whence nbi+1
G

(0) = dom(G), and nbi+2
G

(0) = nbi+1
G

(0). Thus all second or third n-

representations are connected. It is left to the reader to prove that no proper extension

of a second or third n-representation is a second or third n-representation. Therefore

Proposition 2.25, Proposition 2.26 and Proposition 2.27 are correct for the class C of

all second or third n-representations and for the class D of all n-representations. In

particular the following statement is correct.

Proposition 5.2 A substructure of an n-representation H is a closed substructure of

H iff it is an n-representation. ♦

Let v0, . . . , vi−1 ∈ Sn, v = v0 . . . vi−1, w ∈ S∗n be of length j. The addition n-

representation arpk,ln (v, w) of (v, w) with 1 ≤ k ≤ n, 0 ≤ l ≤ n is the 2-fold, 1-bound

n-addition

(K ⊕ U, a),

where K is the l-termination of ngrn(Rkv), the mapping assigning i+ 2, . . . , i+ j + 3 to
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G1, h(a0), . . . , h(a7)). ♦

On the other hand, the following lemma holds:

Lemma 5.2 Assume that v ∈ S̃
∗
n is y-oriented, srpn(w) is embedded into an arpn(y, z)-

shift H of G:= (srpn(v)⊕G0), where G0 is a third n-representation with domain disjoint

from dom(srpn(v)) = {0, . . . , |v|S̃n + 1}. Then w = v or w is a (Sn, {(y, z)})-rewriting

of v.

Proof. If H = G, srpn(w) ∼= srpn(v), because srpn(w) is embedded into G. This

implies w = v. We consider the case H 6= G. Then there is an n-addition (K, a) ∈

arpn(y, z) and an embedding f from K into G with H = sh(G, f(a0), . . . , f(a7)). Indeed,

{f(i+2), . . . , f(i+j+3)} = dom(G0). Therefore 0 ≤ f(k) < |v|S̃n+2 for all 0 ≤ k ≤ i+1

and, since v is y-oriented, f(k + 1) = f(k) + 1 for all 0 ≤ k ≤ i. By looking at the

definition of an addition n-representation of (y, z) we obtain that H = H0 ⊕H1, where

H0, H1 have disjoint domains, H0
∼= srpn(w′) for a {(y, z)}-rewriting w′ of v and H1 is

a third n-representation. srpn(w) ∼= H0, because srpn(w) is embedded into H. This

implies w = w′ and consequently w is a {(y, z)}-rewriting of v. ♦

5.2 Reduction of the word problem to the synthesizability problem

Let n ∈ N, n ≥ 2, Σ ⊆ Sn, v, w ∈ Σ∗ and T = (Σ, ρ) be a semi-Thue system. The

l + 1-sequence G is built on (n, T , v, w) iff

(i) G0 = {srpn(v)} ∪ {trpn(z) | (y, z) ∈ ρ for some y ∈ Σ∗}.
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(ii) Gi+1 = Gi ∪ {H}, where H is an arpn(T )-shift of a finite combination of Gi (0 ≤

i < l).

(iii) srpn(w) is embedded into some G ∈ Gl.

Theorem 5.2 (a) Assume that w is a k-step T -reduction of v. Then there is a k+1-

sequence built on (n, T , v, w).

(b) Assume that Σ = S̃n and v is T -oriented. Then w is a ≤ k-step T -reduction of v

iff there is an l + 1-sequence G built on (n, T , v, w) (l ≤ k).

Proof. (a) There is a k+1-sequence u to Σ∗ with u0 = v, uk = w and ui+1 a T -rewriting

of ui (0 ≤ i < k). We want to show that there is a k + 1-sequence built on (n, T , v, w).

The proof is by induction on k, the case k = 0 being obvious. Assume the case k = l

holds for all w ∈ Σ∗. Let k = l + 1. w = uk is a (Sn, {(y, z)})-rewriting of ul ∈ Σ∗

for some (y, z) ∈ ρ. By induction hypothesis there is an l + 1-sequence G built on

(n, T , v, ul). srpn(ul) is embedded into some G0 ∈ Gl. Let G1
∼= trpn(z) have domain

disjoint from dom(G0). G0⊕G1 is a finite combination of Gl and, by Lemma 5.1, srpn(w)

is embedded into an arpn(y, z)-shift H of G0 ⊕G1. This means that the l + 2-sequence

G0, . . . ,Gl,Gl ∪ {H} is built on (n, T , v, w).

(b) ⇒ is immediate from (a). ⇐. Assume there is an l + 1- sequence G built on

(n, T , v, w). We claim that w is a≤ l-step T -reduction of v. This goes again by induction

on l and is easy, if l = 0. Assume the claim is true for l = k. Set l = k + 1. Every
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no procedure decides for all T0-oriented v ∈ S̃
∗
14 whether the empty word ∅

is a T0-reduction of v and

no procedure decides for all v ∈ S̃
∗
14 whether v is a I0-reduction of t0.

Recall that d14 : {0, . . . , 14} → {1, 2} maps 0, 1, 2 to 1 and 3, . . . , 14 to 2. srp14(∅) ∈

Gd14 ∩ G1 ∩ Gconn has a 2-element domain. Using Proposition 5.3, arp14(T0) 6= ∅ and

arp14(I0) 6= ∅ are finite sets of 2-fold, 1-bound 14-additions (K, u) with max{|dom(K)|−

|{u0, . . . , u7}|} ≤ 4.

Let H be a set of structures with pairwise disjoint domains whose isomorphism types

are precisely the types of the structures in {srp14(t0)}∪{trp14(z) | (y, z) ∈ ρ0 for some y ∈

S̃
∗
14}. H can be chosen to be a finite set of at most 6-element structures in Gd14∩G1∩Gconn.

Set H0 =
∑
H. H0 ∈ Gd14 ∩ G1.

Corollary 5.3 The arp14(T0)-synthesizability problem for Gd14 ∩ G1, srp14(∅) and the

arp14(I0)-synthesizability problem for H0, Gd14 ∩ G1 ∩ Gconn are unsolvable.

Proof. We use the rewriting of the synthesizability problem stated at the beginning

of Section 3.2. srp14(v) and trp14(v) are in Gd14 ∩ G1 for all v ∈ S̃
∗
14. Therefore, if

the procedure P solves the arp14(T0)-synthesizability problem for Gd14 ∩ G1, srp14(∅),

we can obtain a procedure P0 that decides for v ∈ S̃
∗
14 in the same way P decides

given 14, arp14(T0), {srp14(v)} ∪ {trp14(z) | (y, z) ∈ ρ0 for some y ∈ S̃
∗
14}, srp14(∅). With

Corollary 5.2 for any T0-oriented v ∈ S̃
∗
14 the procedure P0 decides whether ∅ is a T0-

reduction of v, which creates a contradiction.
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If the procedure P solves the arp14(I0)-synthesizability problem for H0,Gd14 ∩ G1 ∩

Gconn, we can obtain a procedure P0 that decides for v ∈ S̃
∗
14 in the same way P decides

given 14, arp14(I0), H0, srp14(v). Since t0 is I0-oriented, with Corollary 5.2, P0 decides

whether v is a I0-reduction of t0, which creates again a contradiction. ♦

Corollary 5.4 The (2-fold) addition (and thus the synthesizability) problem is unsolv-

able. ♦

It is worthwhile pointing out at this point that the question whether the 1-fold syn-

thesizability (or even addition) problem is solvable or not remains open in this work.
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6 A condition for m-equivalence between structures

over a set of relation symbols or constants

Mathematicians have found several conditions equivalent to or stronger than the m-

equivalence between structures (m ∈ N), i. e. the property of satisfying the same sen-

tences of quantifier rank m. If the underlying set of symbols is a finite set of relation

symbols or constants, Fräıssé proved that m-equivalence is equivalent to the existence

of an m-back-and-forth system between the structures [5, 1, 4]. Ehrenfeucht gave a

characterization based on the existence of a winning strategy for the second player in

the game that carries his name [2, 1, 4]. Still under the assumption that the underlying

set of symbols is a finite set of relation symbols or constants, all m-equivalence classes

are axiomatized by a sentence, called m-Hintikka sentence [1, 4], or, more specifically,

the m-Hintikka sentence of the class. It follows that two structures are m-equivalent iff

there is an m-Hintikka sentence that they both satisfy. Finally Hanf [3, 1], using Ehren-

feucht’s game, found a stronger condition based on the number of the isomorphism types

of the 2m-neighbourhoods [6] (3m-neighbourhoods in [1]) in a graph constructed from

the structures.

Equivalence relations, like the r,m-equivalence, that are naturally derived from the

m-equivalence, are fundamental for our investigation of synthesizability. Therefore it

appeared appropriate to investigate them as well. This is what we do in this chapter.

We provide another sufficient condition for m-equivalence. This condition allows us to
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significantly strengthen Hanf’s Theorem. Using, as an example, the class of structures

that are a k-path for some k ∈ N and the related class U , which is the class of structures

that are an alternate k-path for some even k ∈ N or the class of structures that are an

alternate k-path for some odd k ∈ N, we obtain, through this strenghtening, depending

on arbitrary r,m ∈ N, in Theorem 6.2, the smallest k such that for all j ≥ k all j-paths

are pairwise r,m-equivalent, in Theorem 6.3, the smallest k such that for all j ≥ k all

j-paths are pairwise 2, r,m-equivalent, in Proposition 6.19, a number at most r + 1 (if

r 6= 0) above the smallest k such that for all j ≥ k all alternate j-paths in U are pairwise

r,m-equivalent and finally, in Proposition 6.21, for even r, a number at most r
2

+ 1 (if

r 6= 0) above the smallest k such that for all j ≥ k all alternate j-paths in U are pairwise

2, r,m-equivalent.

These achievements will lead in their turn to practicable conclusions regarding the

derivability in a fixed number of steps from combinations of sets of structures belong-

ing to or constructed from the structures in the classes used as an example. These

conclusions are presented in Section 7.3.

Until the end of Section 6.1 let L be a set of relation symbols, C a set of constants

and e 6∈ C a constant.

Let U be a structure over L∪C, u ∈ dom(U), A ⊆ dom(U), C0 ⊆ C and k ∈ N. We

will use the following definitions and simplifications of notation:

CU
0 = {cU | c ∈ C0},

U |A = (U � L)|A (A 6= ∅),
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gf(U) = gf(U � L),

nbk
U

(A) = nbkgf(U)(A),

nbk
U

(u) = nbk
U

({u}),

Uk(A) = (U |(nbk
U

(A) ∪ CU), (cU)c∈C),

Uk(u) = Uk({u}).

The k-neighbourhood type of u in U is the isomorphism type of (Uk(u), (e:u)).

Indeed, the smallest k for which a ∈ nbk
U

(b), if there is such a k, ∞, otherwise,

satisfies the conditions of a distance between a and b (depending on U). We will not

work with the distance, because in spite of its intuitive value, it does not effectively

simplify the proofs.

Proposition 6.1 For all a, b, c ∈ dom(U) if a ∈ nbk
U

(b) and a ∈ nbj
U

(c), then c ∈

nbk+j
U

(b).

Proof. By induction on k. ♦

Proposition 6.2 Let j ∈ N and j ≤ k. nbj
U

(u) = nbj
U|nbkU (u)

(u).

Proof. This proposition is a particular case (A = {u}) of Proposition 2.21 (d). ♦

6.1 m-overlaps

Let U, V be structures over L ∪ C and m ∈ N. We define an m-overlap from U to V as

a triple

((a1, . . . , ai), (b1, . . . , bi), (p1, . . . , pi))
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nb2m−i−1

V
({b1, . . . , bi}) there is a ∈ dom(U) such that

((a1, . . . , ai, a), (b1, . . . , bi, b), (p1, . . . , pi, p)) ∈ O

for some p.

Theorem 6.1 If there is an m-neighbourhood system from U to V , which is closed

under m-extensions from U to V , then U ≡m V .

Proof. Assume that O is an m-neighbourhood system from U to V , which is closed

under m-extensions from U to V . Let 0 ≤ i < m and suppose that in an Ehrenfeucht-

Fräıssé m-game U, V after exactly i moves the play (a, b) = ((a1, . . . , ai), (b1, . . . , bi))

has been made with (a, b, p) ∈ O for some p. We show that for every u ∈ dom(U)

there is v ∈ dom(V ) and vice versa such that ((a, u), (b, v), (p, q)) ∈ O for some q. By

Proposition 6.4 (c) this gives Duplicator a winning strategy in the game. Ehrenfeucht’s

Theorem yields subsequently the claim.

If u ∈ nb2m−i−1

U
(aj) for some 1 ≤ j ≤ i, then set v = pj(u). The m-extension

((a, u), (b, v),(p, pj|dom(U2m−i−1−1(u)))) of (a, b, p) is therefore in O. If v ∈ nb2m−i−1

V
(bj)

for some 1 ≤ j ≤ i, then v = pj(u) for some u ∈ dom(U2m−j−1(aj)). By Proposition 6.3

u ∈ nb2m−i−1

U
(aj). Again ((a, u), (b, v), (p, pj|dom(U2m−i−1−1(u)))) is an m-extension of

(a, b, p). The cases u 6∈ nb2m−i−1

U
({a1, . . . , ai}) and v 6∈ nb2m−i−1

V
({b1, . . . , bi}) are imme-

diate from the assumption. ♦

Corollary 6.1 If the set of all m-overlaps from U to V is an an m-neighbourhood

system from U to V , then U ≡m V . ♦
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The following corollary is a strengthening of Hanf’s Theorem.

Corollary 6.2 If there is an m-sequence k to N such that for all u ∈ dom(U) and

0 ≤ i < m

|nb2m−i−1

U
(u)| ≤ ki

and for each isomorphism type τ of a structure over L ∪ C ∪ {e} either there are the

same number of elements whose 2m−i−1 − 1-neighbourhood type is τ in U and in V 4 or

in both > iki elements with 2m−i−1 − 1-neighbourhood type τ , then U ≡m V .

Proof. Let 0 ≤ i < m and ((a1, . . . , ai), (b1, . . . , bi), (p1, . . . , pi)) be an m-overlap from U

to V . Set A = {a1, . . . , ai} B = {b1, . . . , bi}. |nb2m−i−1

U
(A)| ≤ iki. By Proposition 6.4

(b) |nb2m−i−1

V
(B)| ≤ iki and for each isomorphism type τ of a structure over L∪C∪ {e}

there are the same number of elements in nb2m−i−1

U
(A) of 2m−i−1−1-neighbourhood type

τ in U as of elements in nb2m−i−1

V
(B) of 2m−i−1 − 1-neighbourhood type τ in V . This

means that condition (2) in the definition of n-neighbourhood system is fulfilled for the

set of all m-overlaps from U to V . Corollary 6.1 now yields the claim. ♦

6.2 r, k-paths

In this section we apply Corollary 6.2 to rather simple structures, called r, k-paths. The

results from this application will be used in Chapter 7 to construct an example for The-

4I. e. the number of a ∈ dom(U) whose 2m−i−1 − 1-neighbourhood type in U is τ is equal to the

number of a ∈ dom(V ) whose 2m−i−1 − 1-neighbourhood type in V is τ .
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orem 7.7, which, in turn, will deliver, in Chapter 12, a result about the synthesizability

from combinations of formulas.

Throughout this whole section and the next two sections 6.3, 6.4 let c0, c1, . . . be

(distinct) constants, Cr = {c0, . . . , cr−1} (r ∈ N) and P,Q be (distinct) 1-placed relation

symbols. A k-path (k ∈ N) is an expansion U over {P,Q,R1} of a 1-multigraph (i. e.

U � {R1} is a 1-multigraph) with dom(U) = {a0, . . . , ak+1} for distinct a0, . . . , ak+1,

satisfying for all 0 ≤ i ≤ j ≤ k + 1

PU(ai) iff i = 0,

QU(ai) iff i = k + 1,

RU
1 (ai, aj) iff j = i+ 1.

Any two k-paths are obviously isomorphic. An r, k-path (r, k ∈ N) is an expansion

of a k-path with Cr. If U is an r, k-path, the element u ∈ dom(U) for which PU(u)

respectively QU(u) is called the left respectively the right end point of U and denoted

by lft(U) respectively rgt(U). An end point of U is the left or the right end point of U .

Let U be an r, k-path. We define LU: {0, . . . , k + 1} → dom(U) by

LU(0) = lft(U),

LU(i+ 1) is the u ∈ dom(U) \ {LU(0), . . . , LU(i− 1)} with RU
1 (LU(i), u) (0 ≤ i < k+ 1).

Furthermore we denote the inverse function L−1
U of LU by PU and set dstU(u, v) =

|PU(u)−PU(v)| to be the absolute value of PU(u)−PU(v) (u, v ∈ dom(U)). The following

proposition is easy to prove for all u, v ∈ dom(U) and n ∈ N.
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Proposition 6.6 u ∈ nbn
U

(v) iff dstU(u, v) ≤ n. ♦

A list of U is an injective, thus a bijective, sequence i0, . . . , ir−1 to {0, . . . , r − 1}

(usually also called a permutation of {0, . . . , r−1}) for which PU(cUi0) ≤ . . . ≤ PU(cUir−1
).

If i is a list of U , we call the sequence

PU(cUi0), PU(cUi1)− PU(cUi0), . . . , PU(cUir−1
)− PU(cUir−2

), k + 2− PU(cUir−1
), if r > 0,

k + 1, if r = 0,

the signature of U . It is easy to verify that the signature of U is independent of the

list that defines it. u ∈ dom(U) is called n-isolated in U (n ∈ N) iff cUi 6∈ nbn
U

(u) for all

0 ≤ i < r, lft(U) 6∈ nbn−1
U

(u) and rgt(U) 6∈ nbn−1
U

(u) (define nb−1
U

(u) = ∅).

Let m,n, r, k, l ∈ N, n 6= 0, U be an r, k-path and V an r, l-path. U, V are called

n-distance equivalent iff for all 0 ≤ i, j < r:

(i) cUi ∈ nbh
U

(cUj ) iff cVi ∈ nbh
V

(cVj ) (h ≤ n).

(ii) lft(U) ∈ nbh−1
U

(cUi ) iff lft(V ) ∈ nbh−1
V

(cVi ) (0 < h ≤ n).

(iii) rgt(U) ∈ nbh−1
U

(cUi ) iff rgt(V ) ∈ nbh−1
V

(cVi ) (0 < h ≤ n).

(iv) lft(U) ∈ nbh−2
U

(rgt(U)) iff lft(V ) ∈ nbh−2
V

(rgt(V )) (1 < h ≤ n).

(iv) follows from (i) - (iii), if r ≥ 1. Obviously, if U, V are n-distance equivalent, U ≡0 V

and, consequently, if r ≥ 1, U |CU
r
∼= V |CV

r .

Proposition 6.7 If U, V are not 2m-distance equivalent, then U 6≡m V .
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Proof. First consider the case r,m ≥ 1. Assume (a). Let W be an r, k-path whose

signature p satisfies

p0 ≥ 2m; pi ≥ 2m + 1 (0 < i ≤ r).

W has a 2m−1-isolated point, but no r, l-path that is 2m-distance equivalent to W has

one. Proposition 6.7 and Corollary 6.3 imply that no r, l-path is m-equivalent to W .

Assume (b). Let W be an r, k-path whose signature p satisfies

p0 ≤ 2m; pi ≤ 2m + 1 (0 < i ≤ r).

W does not have a 2m−1-isolated point, but every r, l-path that is 2m-distance equivalent

to W has one. Again, by Proposition 6.7 and Corollary 6.3, no r, l-path is m-equivalent

to W .

The case r = 0, m ≥ 2 is the case r = 1, m− 1. ♦

Theorem 6.2 Assume r,m ≥ 1 or m ≥ 2. The k-path is r,m-equivalent to the l-path

iff to every r, k-path there is an m-equivalent r, l-path iff k = l or k, l ≥ 2m(r+1)+r−x.

Proof. Follows from Lemma 6.1 and Lemma 6.2. ♦

Corollary 6.4 If r,m ≥ 1 or m ≥ 2, then 2m(r+ 1) + r− x is the smallest n ∈ N such

that for all k ≥ n the k-path is r,m-equivalent to the n-path. ♦

6.3 Connected sequences modulo k

c0, c1, . . ., P andQ have been declared in the previous section. Motivated by the property

of the shift operation, we define the r-sequence u to dom(U) connected modulo k in the
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structure U over the set L of relation symbols (r, k ∈ N, k ≥ 1) iff k divides r (i. e.

r = ik for some i ∈ N) and for all 0 ≤ i < r/k the structure U |{uik, . . . , u(i+1)k−1} is

connected or {uik, . . . , u(i+1)k−1} ⊆ {u0, . . . , uik−1}.

Proposition 6.13 (a) If k divides r, the r-sequence v, . . . , v (v ∈ dom(U)) is con-

nected modulo k in U .

(b) u is connected modulo 1 in U . ♦

We refine the definition of r,m-equivalence given in the preliminaries. First we abbrevi-

ate (U, (ci:ui)0≤i<r) by (U, u). Let U, V be structures over L. U, V are k, r,m-equivalent

(k, r,m ∈ N, k ≥ 1), U ≡k,r,m V , iff for all r-sequences u to dom(U) that are connected

modulo k in U there is an r-sequence v to dom(V ) and for all r-sequences v to dom(V )

that are connected modulo k in V an r-sequence u to dom(U) with (U, u) ≡m (V, v).

Obviously U ≡1,r,m V iff U ≡r,m V , because of Proposition 6.13 (b).

Proposition 6.14 Assume that there is an r-sequence u to dom(U) connected modulo

k in U and that U ≡k,r,m V . Then U ≡k,i,m V for all i ≤ r.

Proof. If r = 0, the claim obviously holds. Let r > 0. From the assumption k divides r

and, since (U, u) ≡m (V, v) for some r-sequence v to dom(V ), U ≡m V . Therefore the

claim holds for i = 0. Assume 0 < i ≤ r. If k does not divide i, the claim trivially

holds. Assume finally that k divides i and let w be an i-sequence to dom(U) that is

connected modulo k in U . The r-sequence w̄ = w0, . . . , wi−1, w0, . . . , w0 is connected
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(a) k ≥ 2m(r/2 + 1) + r − x and l < 2m(r/2 + 1) + r − x or

(b) k < 2m(r/2 + 1) + r − x and k 6= l.

Then there is a shift r, k-path to which no r, l-path is m-equivalent (which implies that

the k-path is not 2, r,m-equivalent to the l-path).

Proof. First consider the case r,m ≥ 1. Assume (a). Let W be an r, k-path whose

signature p satisfies

p0 ≥ 2m; p2i ≥ 2m + 1 (0 < i ≤ r/2); p2i+1 = 1 (0 ≤ i < r/2).

W has a 2m−1-isolated point, but no r, l-path that is 2m-distance equivalent to W has

one. Proposition 6.7 and Corollary 6.3 imply that no r, l-path is m-equivalent to W .

Assume (b). Let W be an r, k-path whose signature p satisfies

p0 ≤ 2m; p2i ≤ 2m + 1 (0 < i ≤ r/2); p2i+1 = 1 (0 ≤ i < r/2).

W does not have a 2m−1-isolated point, but every r, l-path that is 2m-distance equivalent

to W has one. Again, by Proposition 6.7 and Corollary 6.3, no r, l-path is m-equivalent

to W .

The case r = 0, m ≥ 2 is the case r = 1, m− 1. ♦

Theorem 6.3 Assume r,m ≥ 1 or m ≥ 2. The k-path is 2, r,m-equivalent to the

l-path iff to every shift r, k-path there is an m-equivalent r, l-path iff k = l or k, l ≥

2m(r/2 + 1) + r − x.

Proof. Follows from Lemma 6.3 and Lemma 6.4. ♦

135



L. Ermanni A condition for m-equivalence between structures

Corollary 6.5 If r,m ≥ 1 or m ≥ 2, then 2m(r/2 + 1) + r − x is the smallest n ∈ N

such that for all k ≥ n the k-path is 2, r,m-equivalent to the n-path. ♦

6.4 Alternate k-paths and 〈l, k〉-paths

In this section we introduce two variants of a k-path and investigate them briefly in the

light of the results obtained for k-paths. The conclusions of this investigation will be

used in Chapter 7 to construct more examples for Theorem 7.7 (k-paths will be used

for this purpose, too). All these examples will deliver, in Chapter 12, a result about the

synthesizability from combinations of formulas. It should be pointed out that, to the

contrary of what was done for the k-paths, we will not characterize up to the last detail

neither the r,m- nor the 2, r,m-equivalence between these variants of the k-paths, but

limit ourself to the statements needed for the examples we will construct from them.

c0, c1, . . ., Cr (r ∈ N) and P,Q have been set in Section 6.2. Throughout this whole

section let S(6= P,Q) be a 1-placed relation symbol. An alternate k-path (k ∈ N) is an

expansion U over {P,Q,R1, R2} of a 2-multigraph with dom(U) = {a0, . . . , ak+1} for

distinct a0, . . . , ak+1, satisfying for all 0 ≤ i ≤ j ≤ k + 1

PU(ai) iff i = 0,

QU(ai) iff i = k + 1,

RU
1 (ai, aj) iff j = i+ 1 and i is even,

RU
2 (ai, aj) iff j = i+ 1 and i odd.

Any two alternate k-paths are obviously isomorphic. An alternate r, k-path (r, k ∈ N)
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is an expansion of an alternate k-path with Cr. An alternate shift r, k-path (r, k ∈ N)

as an alternate r, k-path U for which cU0 , . . . , c
U
r−1 is connected modulo 2 in U .

Let m,n, r, k, l ∈ N, n 6= 0. We define, for an alternate r, k-path U and an alternate

r, l-path V , lft(U), rgt(U), u ∈ dom(U) n-isolated in U , U, V n-distance equivalent and

PU exactly as we did for r, k-paths, where LU: {0, . . . , k + 1} → dom(U) is given by

LU(0) = lft(U),

LU(i+ 1) is the u ∈ dom(U) \ {LU(0), . . . , LU(i− 1)} with RU
1 (LU(i), u) or RU

2 (LU(i), u)

(0 ≤ i < k + 1).

Let again U be an alternate r, k-path and V an alternate r, l-path. We define U, V

congruent iff

k is even iff l is even and for all 0 ≤ i, j < r

PU(cUi ) is even iff PV (cVi ) is even and

if PU(cUi ) ≤ PU(cUj ), then PV (cVi ) ≤ PV (cVj ).

If U, V are congruent, it still holds, as it did for r, k-paths, that if they are n-distance

equivalent, then U ≡0 V , whence U |CU
r ∼ V |CV

r .

Suppose that f is an isomorphism from U �{R1, R2}|nbn
U

(u) to V �{R1, R2}|nbn
V

(v)

with f(u) = v such that for all 0 ≤ i < r

if cUi ∈ nbn
U

(u), f(cUi ) = cVi ,

if lft(U) ∈ nbn−1
U

(u), f(lft(U)) = lft(V ),

if rgt(U) ∈ nbn−1
U

(u), f(rgt(U)) = rgt(V ).

Set f̄ with dom(f̄) = dom(Un(u)) by f̄ ⊇ f and f̄(cUi ) = cVi for all 0 ≤ i < r. Then
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7 Interpretations

Interpretations are fundamental in the mathematical way of thinking. They allow to

perceive a structure to be (essentially) the same as another one, in spite of appearing

different. For example it is well known that through one interpretation every boolean

ring transforms into a boolean algebra and every boolean algebra is that interpretation of

a boolean ring (refer in this regard for example to [1]). This implies (with Theorem 7.4)

that an expert in the (first-order) theory of rings is also an expert in the theory of

boolean algebras.

In Chapter 7 interpretations are defined and investigated under the aspects that are

relevant for the application to synthesizability. Subsequently, in Chapter 10, they are

narrowed down to reactional interpretations, which, on n-multigraphs, are equivalent

to S-shifts (with S a finite set of finite n-rules). S-shifts are the inspiring force behind

our study of interpretations, which, in this book, are seen as a generalization of the

S-shift operation and therefore considered to play an important role in the study and

the understanding of synthesizability.

Reactional interpretations are a particular case of regular interpretations, also intro-

duced in Chapter 10. The name “regular” has been chosen because of its derivation from

the latin word “regula” (in english: “rule”). Regular interpretations are quantifier-free.

Therefore a particular emphasis is put, in the initial part of this chapter, on quantifier-

free interpretations. From the considerations above it is clear, in spite of their apparent
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simplicity, that they are plenty powerful enough to express all the synthesizability prob-

lems defined in Chapter 3.

The iteration of an interpretation is achieved, naturally, through the composition of

interpretations, which is examined in Section 7.1. The composition of interpretations

leads to the definitions of rank and bound, which play a key role in establishing the

axiomatizability of the class of structures that can be obtained through an iteration

(finitely many times) of the interpretation, starting with the models of a sentence.

This book attempts to shed some light on the class ~ϕ(C) of structures obtained by

applying an interpretation ϕ finitely many times to a structure in an initial class C, on

the basis of the properties of C, i. e. on which (preservation) properties P,Q satisfy the

condition that Q is true for ~ϕ(C), if P is true for C. Said differently, on which properties

of C translate into a corresponding property of ~ϕ(C). It is, for example, a simple result

of this chapter that preservation under isomorphisms translate into itself (i. e. if C has it,

so does ~ϕ(C)). While the set ϕ(C) of the structures that ϕ interprets in a structure in C

is preserved under ultraproducts, if C is (Theorem 7.1), ~ϕ(C) is not necessarily preserved

under ultraproducts, not even if C is axiomatized by a sentence (Corollary 10.2).

If ϕ is a quantifier-free interpretation for a finite set of relations symbols of range

0, Proposition 7.18 states that also the preservation under chains (which is short for

preservation under unions of chains) translates into itself. This subject will be treated

more extensively in Chapter 9.

On our way to the regular interpretations, we meet, in Section 7.3, the weakly
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invertible and invertible interpretations. As the name says, invertible interpretations

are a particular case of weakly invertible interpretations, being the definition of the

latter weaker than the definition of the former. Interestingly, though, by Corollary 7.30,

there are no strictly weakly invertible, quantifier-free interpretations of range 0 for a

finite set of relations symbols.

In Section 7.3, as in the initial part of this chapter, we put a special emphasis on

quantifier-free interpretations and prove that, if they are weakly invertible, their inverse

is itself quantifier-free. For a quantifier-free, invertible interpretation ϕ of range 0 for

a finite set of relations symbols we mention two more properties, namely preservation

under i-sandwiches and under i-fillings, which translate into themselves, when passing

from a class C to ~ϕ(C).

In Section 7.2 we draw some conclusions under the condition that an interpretation

is iterated a fixed (but, of course, arbitrary) finite number of times and the underlying

set of symbols is finite. Given our inspiration source of the study of interpretations,

which is the S-shift, we specify interpretations through the graph theoretical definition

of interpretation connected modulo a natural number. The conclusions in Section 7.2

lead to surprisingly low upper bounds for the size of a combination of a set of structures,

to which an application of an interpretation a fixed, finite number of times yields a model

of a sentence, if such a combination exists.

In Section 7.3 these conclusions are merged with the results of Chapter 6, delivering

the explicit calculations for two rather simple but emblematic classes, that will provide
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the material for yet more concrete examples in Chapter 12.

Before beginning the discussion about interpretations we choose (distinct) constant

symbols c0, c1, . . . If L is a set of relation symbols, we denote by Lr the set L∪{c0, . . . , cr−1}

and, for a structure U over L and an r-sequence u to dom(U), by (U, u) the expansion

(U, (ci : ui)0≤i<r) of U .

An interpretation for the set L of relation symbols of range r ∈ N is a mapping

(ϕR(x0, . . . , xνR−1))R∈L,

where ϕR is a formula in Lr for every R ∈ L. In order to have the range uniquely

determined we require that for some R ∈ L the constant cr−1 occurs in ϕR, if r > 0. An

interpretation for L is an interpretation for L of some range and an interpretation is an

interpretation for some set of relation symbols.

Let L be a set of relation symbols.

The interpretation (ϕR)R∈L is called quantifier-free iff ϕR is quantifier-free for all R ∈ L.

The interpretation ωL for L of range 0 given by

ωL
R = Rx0 . . . xνR−1

for all R ∈ L is called the identity interpretation for L. ϕ is called quantifier bound iff

there is k ∈ N such that qr(ϕR) < k for all R ∈ L. If ϕ is quantifier bound we define

qr(ϕ), the quantifier rank of ϕ, as follows:

qr(ϕ) =


max{qr(ϕR) |R ∈ L} if L 6= ∅;

0 if L = ∅.

147



L. Ermanni 7 Interpretations

Let ϕ be an interpretation for L of range r and s ≥ r.

If U is a structure over Ls, ϕ(U) is the structure V over Ls−r with dom(V ) = dom(U)

and cVi = cUr+i (0 ≤ i < s− r), satisfying for all R ∈ L and all νR-sequences u to dom(U)

RV (u0, . . . , uνR−1) iff U |= ϕR[u].

Consequently, for a structure U over L and an s-sequence u to dom(U),

ϕ(U, u) = (ϕ(U, u0, . . . , ur−1), ur, . . . , us−1).

For structures U, V over L, ϕ carries U into V at the r-sequence u to dom(U) iff

V = ϕ(U, u). ϕ carries U into V iff ϕ carries U into V at some r-sequence u to dom(U).

Instead of writing that ϕ carries U into V (at u), we might write that ϕ defines or

interprets V in U (at u). For a class C of structures over L we define ϕ(C) to be the

class of all structures that ϕ defines in some U ∈ C. For a structure U over L, instead of

writing ϕ({U}) we will write ϕ(U). The proof of the next proposition is straightforward.

Proposition 7.1 If ϕ is quantifier-free and V ⊆ U are structures over Ls, then ϕ(V ) ⊆

ϕ(U). ♦

The interpretations φ, ψ for L of range r are equivalent, φ ↔ ψ, iff φ(U) = ψ(U)

for all structures U over Lr. ↔ is obviously an equivalence relation over the set of all

interpretations for L. We will not distinguish between φ and the equivalence class [φ]↔

of φ modulo ↔.
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Proof. (a) First assume (U, u) |= γ. Choose an (r + s)-sequence ū extending u with

(U, ū) |= δ. We have R(ϕ|γ)(U,u)(a0, . . . , aνR−1) iff (U, u) |= (ϕ|γ)R[a0, . . . , aνR−1] iff

(U, u) |= ϕR[a0, . . . , aνR−1] iff (U, ū) |= ϕR[a0, . . . , aνR−1] iff (U, ū) |= (ϕ|δ)R[a0, . . . , aνR−1]

iff R(ϕ|δ)(U,ū)(a0, . . . , aνR−1). If (U, u) 6|= γ, choose any extension ū of u and proceed anal-

ogously to the first part.

(b) Assume ϕ(U, v) = U for the r-sequence v to dom(U) and let ū be a (r + s)-

sequence to dom(U). If (U, ū) |= δ, choose u0, . . . , ur−1, otherwise (i. e. if (U, ū) 6|= δ)

choose v. In the first case the calculation is analogous to the one in the first part of (a),

since (U, ū) |= δ implies (U, u) |= γ. The calculation for the second case looks as follows:

R(ϕ|γ)(U,v)(a0, . . . , aνR−1) iff (U, v) |= (ϕ|γ)R[a0, . . . , aνR−1] iff (U, v) |= ((γ → ϕR)∧(¬γ →

Rx0 . . . xνR−1))[a0, . . . , aνR−1] iff

(U, v) |= γ and (U, v) |= ϕR[a0, . . . , aνR−1] or

(U, v) 6|= γ and (U, v) |= Rx0 . . . xνR−1[a0, . . . , aνR−1] iff

(U, v) |= γ and (U, v) |= Rx0 . . . xνR−1[a0, . . . , aνR−1] or

(U, v) 6|= γ and (U, v) |= Rx0 . . . xνR−1[a0, . . . , aνR−1] iff

(U, v) |= Rx0 . . . xνR−1[a0, . . . , aνR−1] iff (U, ū) |= Rx0 . . . xνR−1[a0, . . . , aνR−1] iff (U, ū) |=

(ϕ|δ)R[a0, . . . , aνR−1] iff R(ϕ|δ)(U,ū)(a0, . . . , aνR−1). ♦

The class of all structures U over Lr with ϕ(U) 6= U �L is called the domain of ϕ,

dom(ϕ). We set

ζϕ =
∨
R∈L

∃x0 . . . xνr−1¬(Rx0 . . . xνr−1 ↔ ϕR).
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Proposition 7.4 ζϕ axiomatizes dom(ϕ) (i. e. U |= ζϕ iff ϕ(U) 6= U � L for every

structure U over Lr).

Proof. Straightforward. ♦

Let C be a class of structures over L closed under isomorphisms.

Proposition 7.5 The class ϕ(C) is closed under isomorphisms.

Proof. Let U ∈ C, u be an r-sequence to dom(U) and f be an isomorphism from V to

ϕ(U, u). Define U ′ to be the structure from which f is an isomorphism to U . U ′ ∈ C.

Then for all v0, . . . , vνR−1 ∈ dom(V )

RV (v0, . . . , vνR−1) iff (U, u) |= ϕR[f(v0), . . . , f(vνR−1)] iff

(U ′, f−1(u0), . . . , f−1(ur−1)) |= ϕR[v0, . . . , vνR−1] iff

Rϕ(U ′,f−1(u0),...,f−1(ur−1))(v0, . . . , vνR−1).

Hence V = ϕ(U ′, f−1(u0), . . . , f−1(ur−1)), which implies V ∈ ϕ(C). ♦

It follows from the next Theorem 7.1 that, if a class C of structures over L is closed

under ultraproducts, then so is the class ϕ(C) of all structures that ϕ defines in a

structure of C. The main facts about ultrafilters and ultraproducts can be found in [5],

[6], [7]. Let F be an ultrafilter over the set I. F is seen as an equivalence relation over the

class of all functions with domain I (f ≡F g iff {i ∈ I | f(i) = g(i)} ∈ F). If Ai is a set

and Ui a structure over L for all i ∈ I, we denote by
∏

(Ai)i∈I ,
∏

(Ai)i∈I/F ,
∏

(Ui)i∈I/F

respectively the direct product of (Ai)i∈I , the ultraproduct modulo F of (Ai)i∈I and the

ultraproduct modulo F of (Ui)i∈I .
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Let Ui be a structure over L for all i ∈ I and u0, . . . , ur−1 ∈
∏

(dom(Ui))i∈I , i. e.

uji ∈ dom(Ui) for all 0 ≤ j < r, i ∈ I. For v ∈
∏

(dom(Ui))i∈I let [v]∏(Ui)i∈I/F be the

element of dom(
∏

(Ui)i∈I/F) to which v belongs, i. e. the class A ∈
∏

(dom(Ui))i∈I/F

with v ∈ A. To simplify the notation we just write [v] instead of [v]∏(Ui)i∈I/F .

Theorem 7.1

ϕ(
∏

(Ui)i∈I/F , [u0], . . . , [ur−1]) =
∏

(ϕ(Ui, u0i, . . . , u(r−1)i))i∈I/F .

Proof. Let R ∈ L, v0, . . . , vνR−1 ∈
∏

(dom(Ui))i∈I/F .

Rϕ(
∏

(Ui)i∈I/F ,[u0],...,[ur−1])([v0], . . . , [vνR−1]) iff

(
∏

(Ui)i∈I/F , [u0], . . . , [ur−1]) |= ϕR[[v0], . . . , [vνR−1]] iff∏
(Ui, u0i, . . . , u(r−1)i)i∈I/F |= ϕR[[v0], . . . , [vνR−1]] iff

{i ∈ I | (Ui, u0i, . . . , u(r−1)i) |= ϕR[v0i, . . . , v(νR−1)i]} ∈ F iff

{i ∈ I |Rϕ(Ui,u0i,...,u(r−1)i)(v0i, . . . , v(νR−1)i)} ∈ F iff

R
∏

(ϕ(Ui,u0i,...,u(r−1)i))i∈I/F([v0], . . . , [vνR−1]).

The third equivalence is implied by the Theorem of  Loś. ♦

Let T be a theory in L. We are now in the position of stating two necessary and

sufficient conditions for ϕ(modL(T)) to be first-order axiomatizable.

Theorem 7.2 ϕ(modL(T)) is first-order axiomatizable iff it is closed under elementary

equivalence iff for every structure U over L, if some ultrapower of U is in ϕ(modL(T)),

so is U .
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The following Corollary 7.2 (of Corollary 7.1) can be proven analogously to Corollary 3.1.

Corollary 7.2 Let U be a set of structures over L with pairwise disjoint domains. As-

sume ϕ is quantifier-free. V is a (k-step) ϕ-product of a combination of U iff it is a

(k-step) ϕ-product of a combination of
∑
U . If U is finite, then V is a (k-step) ϕ-

product of a finite-combination of U iff it is a (k-step) ϕ-product of a finite-combination

of
∑
U . ♦

Let C be a class of structures over L. The proofs of the following two propositions, that

will be used later in Chapter 9, are immediate.

Proposition 7.6 The sentence δ in L is ϕ-derivable from a structure in C iff ¬δ 6∈

Th(~ϕ(C)). ♦

Proposition 7.7 If the theory T in L axiomatizes ~ϕ(C), then T axiomatizes ~ϕ(Cf) in

the finite.

Proof. Consequence of ~ϕ(Cf) = ~ϕ(C)f. ♦

Assume that L is finite and let Σ be a decidable set of sentences in L. The ϕ-

derivability problem for C, Σ is the question:

Given δ in Σ, is δ ϕ-derivable from a structure in C (i. e. is it consistent with ~ϕ(C))?

The ϕ-derivability problems (for C,Σ) do not reflect accurately the synthesizability

problems defined in Chapter 3. On one hand we will be interested exclusively in classes

of structures cmb(U) for a finite set U of finite structures. On the other hand we want
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to have the possibility of a variable input for U . For these reasons we introduce the

ϕ-synthesizability problems.

Let this time C0 be a decidable class of finite sets of finite structures over L and C1 a

decidable class of finite structures over L (both C0 and C1 closed under isomorphism 5).

The ϕ-synthesizability problem for C0, C1 is the question:

Given U ∈ C1 and U ∈ C0, is U a ϕ-product of a combination of U?

The elementary ϕ-synthesizability problem for C0, Σ is the question:

Given δ in Σ and U ∈ C0, is δ ϕ-derivable from a combination of U?

We will omit C1 in the definition above, if C1 is the class of all the finite structures over

L and Σ, in the definition above, if it is the set of all sentences in L. We simplify the

notation, as we did for the synthesizability definition in Section 3.2, by assigning to

C1 respectively C0 the value X for the class of all structures respectively finite sets of

structures isomorphic to X and to Σ the value δ instead of {δ}.

It follows immediately that the ϕ-derivability problem for cmb(U) and the elementary

ϕ-synthesizability problem for U coincide.

Corollary 7.3 The ϕ-derivability problem for C0 is solvable iff Th(~ϕ(C0)) is decidable.

Proof. Direct consequence of Proposition 7.6. ♦

Interpretations are introduced for example in [2]. Following the formalism in [2] we

define Γ by the following items:

5The finite sets U ,V of structures over L are isomorphic iff for every U ∈ U there is V ∈ V with

U ∼= V and vice versa.
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∂Γ = x0=x0;

φΓ =


φ for φ = y=z and variables y, z;

cr+i=y for φ = ci=y (0 ≤ i < s− r and variable y);

ϕR(y0, . . . , yνR−1) for φ = Ry0 . . . yνR−1 and variables y0, . . . , yνR−1;

fΓ = id dom(U).

Then Γ is an interpretation of ϕ(U) in U for all structures U over Ls, i. e. for every

n ∈ N, every φ that is an atomic formula φ(x0, . . . , xn−1) in L or an atomic formula

φ = ci=xj (0 ≤ i < s − r, 0 ≤ j < n) and all n-sequences u to dom(U) with

U |= ∂Γ[ui] (0 ≤ i < n)

ϕ(U) |= φ[fΓ(u0), . . . , fΓ(un−1)] iff U |= φΓ[u0, . . . , un−1].

We now dedicate some attention to a class of interpretations that play a central

role in this book: quantifier-free interpretations for a finite set of relation symbols. As

a result we completely characterize this class. In Section 10.2 we will further restrict

our investigation to quantifier-free, local interpretations, obtaining an even more simple

characterization.

Let L 6= ∅ be a finite set of relation symbols, r ∈ N, m = max{νR |R ∈ L} and U

the set of all structures over Lr whose domain is {0, . . . , i} (0 ≤ i < m+ r). A function

F : U → U is called monotonic iff c
F (U)
i = cUi for all 0 ≤ i < r and g is an embedding

from F (U) into F (V ) for all U, V ∈ U and all embeddings g from U into V . Assume

that F is monotonic and U, V ∈ U .
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Proof. Let F: U → U be monotonic. G with G(U) = (ΦF (U), cU0 , . . . , c
U
r−1) (U structure

over Lr) as a consequence of Proposition 7.12 is an extension of F , that satisfies the

condition in the definition of F . Therefore F = G. ♦

Theorem 7.3 completely characterizes the quantifier-free interpretations for a finite

set of relation symbols.

Theorem 7.3 The interpretation ϕ for L of range r is quantifier-free iff there is a

monotonic F: U → U with (ϕ(U), cU0 , . . . , c
U
r−1) = F (U) for all structures U over Lr.

Proof. Assume that ϕ is quantifier-free. Eϕ is monotonic. By Lemma 7.1

(ϕ(U), cU0 , . . . , c
U
r−1) = Eϕ(U)

for all structures U over Lr. Assume that there is a monotonic F : U → U such that

(ϕ(U), cU0 , . . . , c
U
r−1) = F (U) for all structures U over Lr. By Corollary 7.5 F (U) =

(ΦF (U), cU0 , . . . , c
U
r−1) for all structures U over Lr. Thus ϕ↔ ΦF . Since ΦF is quantifier-

free and we do not distinguish between ϕ and ΦF , ϕ is quantifier-free. ♦

Proposition 7.13 Assume that F is injective and F−1 monotonic. Then

ΦF (ΦF−1

(U), cU0 , . . . , c
U
r−1) = ΦF−1

(ΦF (U), cU0 , . . . , c
U
r−1) = U �L

for all structures U over Lr.

Proof.

ΦF (ΦF−1
(U), cU0 , . . . , c

U
r−1)

Corollary 7.5
= F (ΦF−1

(U), cU0 , . . . , c
U
r−1)�L

Corollary 7.5
=

F (F−1(U))�L
Proposition 7.11

= U �L.
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Same for ΦF−1
(ΦF (U), cU0 , . . . , c

U
r−1). ♦

Proposition 7.14 Assume that there is a quantifier-free interpretation ψ for L of range

r with ΦF (ψ(U), cU0 , . . . , c
U
r−1) = U �L for all structures U over Lr. Then F is injective

and F−1 monotonic.

Proof. By Lemma 7.1 ΦF (Eψ(U)) = U �L, whence, by Corollary 7.5, F (Eψ(U)) = U ,

for all structures U over Lr. Therefore F (Eψ(U)) = U for all U ∈ U . Since U is finite,

F is injective and F−1 = Eψ monotonic. ♦

With Proposition 7.14 we conclude for the moment our discussion regarding quantifier-

free interpretations and turn our attention to the iteration of interpretations.

7.1 Composition of interpretations

For the whole section let L be a set of relation symbols.

Let δ(x0, . . . , xm−1) be a formula in Ls (m, s ∈ N) and ϕ an interpretation for

L of range r. δ, ϕ are composable iff no variable in δ (free or not) occurs bound in

any ϕR for all R ∈ L. δ ϕ is obtained by replacing every subformula Rt0 . . . tνR−1 in

δ[c0, . . . , cs−1 : cr, . . . , cr+s−1] with ϕR[t0, . . . , tνR−1]:

δ ϕ = δ[c0, . . . , cs−1 : cr, . . . , cr+s−1][ Rt0 . . . tνR−1 : ϕR[t0, . . . , tνR−1]

(t0, . . . , tνR−1 terms in {cr, . . . , cr+s−1}, R ∈ L) ].

Theorem 7.4 Assume that δ, ϕ are composable. Let U be a structure over Lt (t ≥ r+s)
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and u be an m-sequence to dom(U).

U |= (δ ϕ) [u] iff ϕ(U) |= δ[u].

Proof. The proof is by induction on the construction of a formula. Suppose δ =

Rt0 . . . tνR−1.

U |= (δ ϕ) [u] iff

U |= ϕR[t0[c0, . . . , cs−1 : cr, . . . , cr+s−1], . . . , tνR−1[c0, . . . , cs−1 : cr, . . . , cr+s−1]][u] iff

[since no variable in t0, . . . , tνR−1 occurs bound in ϕR]

U |= ϕR[(t0[c0, . . . , cs−1 : cr, . . . , cr+s−1])U [u], . . . , (tνR−1[c0, . . . , cs−1 : cr, . . . , cr+s−1])U [u]] iff

U |= ϕR[t
ϕ(U)
0 [u], . . . , t

ϕ(U)
νR−1[u]] iff

ϕ(U) |= Rt0 . . . tνR−1[u] iff

ϕ(U) |= δ[u].

The induction steps for ∧ and ¬ are straightforward. Assume δ = ∃zγ.

U |= (∃zγ)ϕ [u] iff

U |= ∃z(γ ϕ) [u] iff

there is v ∈ dom(U) with U |= γ ϕ [u, z : v] iff [ by induction hypothesis ]

there is v ∈ dom(U) with ϕ(U) |= γ[u, z : v] iff

ϕ(U) |= δ[u].

In the induction step above we followed the convention for [u, z : v] that the assignment

to a variable is given by its last occurrence in the assignment’s sequence. ♦
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Let ϕ be an interpretation for L of range r. A theory T in L is closed under ϕ

iff ∀y0 . . . yr−1(δ ϕ)[c0, . . . , cr−1 : y0, . . . , yr−1] ∈ T for all δ ∈ T and distinct variables

y0 . . . yr−1 not occurring in δ ϕ. Assume that C is a class of structures closed under ϕ (i.

e. ϕ(U, u0, . . . , ur−1) ∈ C for all U ∈ C, u0, . . . , ur−1 ∈ dom(U)).

Corollary 7.6 Th(C) is closed under ϕ.

Proof. Suppose δ ∈ Th(C) and U ∈ C. Then ϕ(U, u0, . . . , ur−1) |= δ for all u0, . . . , ur−1 ∈

dom(U). By Theorem 7.4 (U, u0, . . . , ur−1) |= δ ϕ for all u0, . . . , ur−1 ∈ dom(U), which

implies U |= ∀y0 . . . yr−1(δ ϕ)[c0, . . . , cr−1 : y0, . . . , yr−1] ∈ T for all distinct variables

y0 . . . yr−1 not occurring in δ ϕ. ♦

Corollary 7.7 Suppose that the theory T in L is closed under ϕ. Then modL(T) is

closed under ϕ.

Proof. Let δ ∈ T, γ = ∀y0 . . . yr−1(δ ϕ)[c0, . . . , cr−1 : y0, . . . , yr−1] for distinct variables

y0 . . . yr−1 not occurring in δ ϕ, U ∈ modL(T) and u0, . . . , ur−1 ∈ dom(U). γ ∈ T.

Hence U |= γ. With Theorem 7.4 this implies ϕ(U, u0, . . . , ur−1) |= δ. Therefore

ϕ(U, u0, . . . , ur−1) ∈ modL(T). ♦

Corollary 7.8 modL(Th(C)) is closed under ϕ. ♦

Corollary 7.9 Let U, V be structures over L. Suppose that ϕ is quantifier bound and

that U ≡k,r,qr(ϕ)+m V (k,m ∈ N, k ≥ 1). Then for every r-sequence u to dom(U) that

is connected modulo k in U there is an r-sequence v to dom(V ) with ϕ(U, u), u ≡m

ϕ(V, v), v.
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Proof. Assume that u is an r-sequence to dom(U) that is connected modulo k in U .

By hypothesis there is an r-sequence v to dom(V ) with U, u ≡qr(ϕ)+m V, v. This implies

U, u, u ≡qr(ϕ)+m V, v, v. Let δ be a sentence in Lr with qr(δ) = m. Then qr(δϕ) ≤

qr(ϕ) + m. By setting t = 2r in Theorem 7.4 we have ϕ(U, u), u |= δ iff ϕ(U, u, u) |= δ

iff U, u, u |= δϕ iff V, v, v |= δϕ iff ϕ(V, v, v) |= δ iff ϕ(V, v), v |= δ. ♦

Let ϕ, ψ be interpretations for L of range r, s respectively.

ψ, ϕ are said to be composable iff ψR, ϕ are composable for all R ∈ L. We define the

composition ψ ϕ of ψ, ϕ to be the interpretation for L of range r + s with

(ψ ϕ)R = ψR ϕ

for all R ∈ L. Assume that ψ, ϕ are composable.

Corollary 7.10 Let U be a structure over Lt (t ≥ r + s).

(ψ ϕ)(U) = ψ(ϕ(U)).

Proof. For all R ∈ L and all νR-sequences u to dom(U)

R(ψ ϕ(U))(u0, . . . , uνR−1) iff U |= (ψ ϕ)R[u] iff

U |= ψR ϕ[u] iff [ by Theorem 7.4 ] ϕ(U) |= ψR[u] iff

Rψ(ϕ(U))(u0, . . . , uνR−1). ♦

Corollary 7.11 Let δ(x0, . . . , xm−1) be a formula in Lq (m, q ∈ N), δ, ψ ϕ be com-

posable, U be a structure over Lt (t ≥ q + r + s) and u an m-sequence to dom(U).

Then

U |= δ(ψ ϕ)[u] iff U |= (δ ψ)ϕ[u].
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By induction the following proposition can be easily verified.

Proposition 7.17 (a) For all n ∈ N the interpretation ϕn for L is of range nr and,

if ϕ is quantifier-free, so is ϕn.

(b) If ϕ is quantifier bound, qr(ϕn) ≤ n qr(ϕ) for all n ∈ N.

(c) Let U, V be structures over L. V is ϕ-derivable in n steps from U iff ϕn defines V

in U (n ∈ N). ♦

Let C be a class of structures over L and ϕ an interpretation for L. We define the

rank with respect to C, ϕ of a structure U over L to be the least i ∈ N such that ϕi

defines U in a structure in C (i. e. U ∈ ϕi(C)), if U ∈ ~ϕ(C); to be ∞, otherwise. The

rank of C, ϕ (in the finite) is the highest rank with respect to C, ϕ of a (finite) structure

in ~ϕ(C), if there is the highest rank; it is −1, if C = ∅ (Cf = ∅); it is ∞, otherwise.

Obviously, if the rank of C, ϕ is in N, then it is the smallest i ∈ N with ~ϕ(C) = ϕ≤i(C).

Let Σ be a set of sentences in L. i ∈ N is a Σ-bound of C, ϕ (in the finite) iff every

sentence in Σ that is ϕ-derivable from some (finite) U ∈ C is ϕ-derivable in ≤ i steps

from some (finite) U ∈ C. An elementary bound of C, ϕ (in the finite) is a Σ-bound

of C, ϕ (in the finite) for the set Σ of all sentences in L. We call the rank respectively

an elementary bound of modL(θ), ϕ (θ a sentence or a theory in L) (in the finite) more

simply the rank respectively an elementary bound of θ, ϕ (in the finite).

Assume that L is finite, ϕ is a quantifier-free interpretation for L of range 0 and C a

class of structures over L.

167



L. Ermanni 7 Interpretations

For any n ∈ N there are only finitely many (logically) inequivalent quantifier-free

formulas ζ(x0, . . . , xn−1) in L. Therefore there are only finitely many, say k, quantifier-

free interpretations for L of range 0. By Proposition 7.17 (a) ϕj is a quantifier-free

interpretation for L of range 0 for all j ∈ N, whence there is j < k with ϕk = ϕj, which

implies that for all i ∈ N there is j < k with ϕi = ϕj. Therefore, if U ∈ ~ϕ(C), by

Proposition 7.17 (c), U = ϕj(V ) for some V ∈ C and j < k, yielding that the rank of

U with respect to C, ϕ is < k. We obtain that, if C 6= ∅, the rank of C, ϕ is in N. (If

C = ∅, the rank is not ∞ either.) With these considerations we can state as a corollary

of Proposition 7.17:

Corollary 7.13 The rank of C, ϕ is not ∞. ♦

Corollary 7.13 delivers a notable set of interpretations ϕ for L for which the rank of

C, ϕ is not ∞, for any class C of structures over L, namely the set of quantifier-free

interpretations for L of range 0. Using this result we obtain, with Corollary 7.14, a large

variety of non-trivial classes of structures which are preserved under chains.

Proposition 7.18 Suppose that C is preserved under chains. ~ϕ(C) is preserved under

chains.

Proof. First prove that if ψ is a quantifier-free interpretation for L of range r and

(Uγ)γ<α a chain of structures with each Uγ over Lr, then ψ(
⋃

(Uγ)γ<α) =
⋃

(ψ(Uγ))γ<α.

Therefore, for all i ∈ N, since ϕi is quantifier-free of range 0, ϕi(C) is preserved under

chains. Because if D0, . . . ,Dk are preserved under chains, so is D0 ∪ . . . ∪ Dk, for all
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i ∈ N the class ϕ≤i(C) is preserved under chains. By Corollary 7.13 ~ϕ(C) = ϕ≤i(C) for

some i ∈ N. ♦

Corollary 7.14 Let U be a finite set of finite, connected structures over L. ~ϕ(cmb(U))

is preserved under chains.

Proof. cmb(U) is axiomatized by a sentence in ΠL
2 , whence preserved under chains. Now

use Proposition 7.18. ♦

We now provide an example of the use of Corollary 7.14. For simplicity, in this exam-

ple, we write R instead of R1. If U is a structure over the set S1 of multigraph symbols,

we denote by Ũ , Û and ¬U the structures over S1 with domain dom(U) satisfying:

RŨ(u, v) iff RU(u, v) for all u 6= v in dom(U);

RŨ(u, u) iff not RU(u, u) for all u ∈ dom(U);

not RÛ(u, v) for all u 6= v in dom(U);

RÛ(u, u) iff not RU(u, u) for all u ∈ dom(U);

R¬U(u, v) iff not RU(u, v) for all u, v ∈ dom(U).

Let U be the set of all structures over S1 with domain {0} or {0, 1}. Set

A = {U ∈ U | dom(U) = {0, 1}, RU(0, 0) and RU(1, 1)}

and A,B ∈ U with domain {0, 1} through

RA(1, 0), not RA(0, 1), RA(0, 0) and not RA(1, 1); B = ¬A.

Let F: U → U map every U ∈ U \ (A∪{A,B}) to ¬U , every U ∈ A to Ũ and U = A,B

to Û . F is monotonic. ΦF is a quantifier-free interpretation for S1 of range 0. Since,
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7.2 ϕ-derivability in a fixed number of steps from combinations

The proof of Theorem 7.5, which is part of this section, requires the simple combinatorial

result expressed in Proposition 7.20. Let n ∈ N. We call m0, . . . ,mk−1 (k ≥ 1) a

factorization of n iff m0 + . . . + mk−1 = n and m0 ≥ m1 ≥ . . . ≥ mk−1 > 0. For

m ∈ N, m 6= 0 we define n/m as the largest k ∈ N with km ≤ n. This is also the

largest natural number k ≤ n
m

, where n
m

denotes the rational quotient of n and m. An

i-sequence a to N majorizes a j-sequence b to N (i, j ∈ N) iff j ≤ i and bk ≤ ak for all

0 ≤ k < j.

Proposition 7.20 Suppose n 6= 0. n/1, . . . , n/n majorizes every factorization of n.

Proof. Let m0, . . . ,mk−1 (k ≥ 1) be a factorization of n. Certainly k ≤ n, since

m0, . . . ,mk−1 6= 0. Assume, towards a contradiction, that mi > n/(i + 1) for some

0 ≤ i < k. Then i ≥ 1 and mi >
n
i+1

. Hence m0 + . . .+mi−1 <
i n
i+1

. Therefore mj <
n
i+1

for a 0 ≤ j < i, which implies mj ≤ n/(i+ 1), yielding mj < mi. This contradicts that

m0, . . . ,mk−1 is a factorization of n. ♦

Let L be a finite set of relation symbols.

Proposition 7.21 Let i ∈ N, U0, . . . , Ui and V0, . . . , Vi be each an i + 1-sequence of

structures over L with disjoint domains and uj respectively vj (0 ≤ j ≤ i) be finite

sequences of the same length to dom(Uj) respectively dom(Vj). Assume Uj, uj ≡m

Vj, vj (0 ≤ j ≤ i). Then U0 ⊕ . . .⊕ Ui, (u0, . . . , ui) ≡m V0 ⊕ . . .⊕ Vi, (v0, . . . , vi).

Proof. Immediate consequence of Ehrenfeucht’s Theorem. ♦

171



L. Ermanni 7 Interpretations

Let k, n,m ∈ N, k ≥ 1, r = nk. Let furthermore Q be the (n+m)-sequence

≡k,(n/1)·k,m, . . . ,≡k,(n/n)·k,m,≡m, . . . ,≡1

(notice that ≡m =≡k,0,m, . . . ,≡1 =≡k,0,1) and U ,V 6= ∅ be sets of structures over L with

pairwise disjoint domains.

Theorem 7.5 Suppose that A,B are full Q-choices of U ,V respectively and Ai,Bi are

Qi-equivalent for all 0 ≤ i < n+m. Then
∑
U ≡k,r,m

∑
V.

Proof. To begin we need some designations. Let Y 6= ∅ be a set of structures over

L with pairwise disjoint domains. For y ∈ dom(
∑
Y) we write [y]Y for the structure

Y ∈ Y with y ∈ dom(Y ). Let y be an r-sequence to dom(
∑
Y) that is completely

connected modulo k in
∑
Y , i. e. with the property that for all 0 ≤ i < n the restriction∑

Y|{uik, . . . , u(i+1)k−1} is connected. We define the equivalence relation ∼ky,Y over

{0, . . . , n− 1} by

i ∼ky,Y j iff [yik]Y = [yjk]Y

for all 0 ≤ i, j < n. For I ∈ {0, . . . , n − 1}/ ∼ky,Y set [I]ky,Y equal [yik]Y for some (and

whence all) i ∈ I. A bijective i-sequence I to {0, . . . , n− 1}/ ∼ky,Y such that |Ij| ≥ |Il|

for all 0 ≤ j ≤ l < i is called an ordered y,Y-partition modulo k. Finally for 0 ≤ i0 <

. . . < ij−1 < n and I = {i0, . . . , ij−1} set yI,k = yi0k, . . . , y(i0+1)k, . . . , yij−1k, . . . , y(ij−1+1)k.

Now we proceed with the proof. Choose an r-sequence u to dom(
∑
U) that is

connected modulo k in U (for u to dom(
∑
V) the proof proceeds in the symmetrically

corresponding way). By eliminating repeated elements in u we can assume that u
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(in+m)U∈U and

Q =≡k,((in)/1)·k,m, . . . ,≡k,((in)/(in))·k,m,≡m, . . . ,≡1 .

Theorem 7.7 Assume that Ū is ϕ-derivable in ≤ i steps from a combination U of U .

Then there is V̄ ≡l Ū that is ϕ-derivable in ≤ i steps from a combination of C with

coefficients ≤ α.

Proof. By Proposition 7.17 (a), (c) Ū = ϕj(U, u) for some j ≤ i and some jr-sequence

u to dom(U). Let R be the jn+m-sequence

≡k,((jn)/1)·k,m, . . . ,≡k,((jn)/(jn))·k,m,≡m, . . . ,≡1 .

R is a [k, jr,m]-sequence over U and Ej0 is finer than Rj0 for all 0 ≤ j0 < jn + m.

Let U ′′ ⊆ U ′ be a combination set of U with coefficients (jn + m)U∈U and D be a

choice set of U/R0. By Corollary 1.6 V includes an R-contractionW of U ′. Because, by

Proposition 1.2 (d), αWR0,U(U) ≤ jn+m for all U ∈ U , there is an injective F:W → U ′′

with R0(F (W ),W ) for all W ∈ W . By Proposition 1.2 (a) F (W) ⊆ U ′′ is an R-

contraction of U ′. By Proposition 1.2 (b) F (W ) is an R-contraction of U ′′ and α
F (W)
R0,U =

αWR0,U . By Corollary 7.20 there is a combination W of D with coefficients ≤ αWR0,U

satisfying W ≡k,jr,m U . By Corollary 7.19 there is a combination V of C with coefficients

≤ αVE0,U = α satisfying V ≡k,jr,m W . We obtain V ≡k,jr,m U . By Proposition 7.19 there

are j0 ≤ j ≤ i and a j0r-sequence v to dom(V ) with ϕj0(V, v) ≡l Ū . ♦

Theorem 7.7 delivers an upper bound for the size of a combination of U from which

some structure of an l-equivalence type is ϕ-derivable in ≤ i steps, if a structure of
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that type is ϕ-derivable in ≤ i steps from a combination of U . (Here by the size

of a combination U of U we mean the smallest cardinality of a combination set of

U whose sum is U .) If the theorem is reformulated with (in + m)U∈U instead of α,

the proof could be carried out by means of Corollary 7.18, instead of Corollary 7.20,

which guarantees the existence of a combination V of C with coefficients ≤ (in+m)U∈U

satisfying V ≡k,ir,m U . Since Corollary 7.18, as noted immediately after it, has a direct

proof from Ehrenfeucht’s Theorem, its use would make the proof of the reformulated

version far more straightforward. On the other hand α ≤ (in + m)U∈U . If U is a finite

set of finite structures over L, both Theorem 7.7 and its reformulated version lead to a

procedure that solves the problem whether a sentence in L is ϕ-derivable in ≤ i steps

from a combination of U . Whether Theorem 7.7 leads to a relevantly lower complexity of

the problem will not be examined in this book and remains therefore an open question.

In any case, it delivers strikingly lower upper bounds in the examples that will follow

in the next section.

Corollary 7.21 Every sentence that is ϕ-derivable in ≤ i steps from a combination of

U is already ϕ-derivable in ≤ i steps from a finite-combination of U . ♦

Let U be a set of finite structures over L.

The next corollary is a rather expected and yet not obvious consequence of Theo-

rem 7.7.
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Corollary 7.22 Assume that to L belongs a non-monadic relation symbol. Then there

is no interpretation ψ for L such that ~ψ(cmb(U)) is the class of all structures over L.

Proof. Towards a contradiction let ψ be an interpretation for L of range r such that

~ψ(cmb(U)) is the class of all structures over L and δ be an axiom of infinity in L. Then

δ is ψ-derivable from a combination of U , whence, by Corollary 7.21, from a finite-

combination of U , which is a finite structure over L. But this is not possible, being δ an

axiom of infinity. ♦

Corollary 7.23 i ∈ N is an elementary bound of cmb(U), ϕ iff i is an elementary

bound of cmb(U), ϕ in the finite.

Proof. ⇒. Assume i is an elementary bound of cmb(U), ϕ and that δ is a sentence in L

which is ϕ-derivable from a finite combination of U . Then δ is ϕ-derivable in ≤ i steps

from some combination of U . By Corollary 7.21 δ is ϕ-derivable in ≤ i steps from a

finite combination of U . ⇐. Now assume that i is an elementary bound of cmb(U), ϕ

in the finite and that δ is a sentence in L which is ϕ-derivable from a combination of U .

By Corollary 7.21 δ is ϕ-derivable from a finite combination of U , whence in ≤ i steps

from a finite combination of U . ♦

Corollary 7.24 Th((~ϕ(cmb(U)))f) = Th(~ϕ(cmb(U))). ♦

Corollary 7.25 If U is finite and the rank of cmb(U), ϕ is not∞, then the ϕ-derivability

problem for cmb(U) is solvable. ♦
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Proposition 7.25 Assume that Ū is ϕ-derivable in ≤ i steps from a combination of

U . Then there is V̄ ≡l Ū that is ϕ-derivable in ≤ i steps from a combination of U with

coefficients ≤ (in+m)U∈U .

Proof. Let V be a combination set of U and assume that Ū is ϕ-derivable in ≤ i steps

from
∑
V . By Proposition 7.17 (a), (c) there is a jr-sequence v to dom(

∑
V) with

ϕj(
∑
V , v) = Ū (j ≤ i). Let W ⊆ V satisfy the condition that for every V ∈ V

there are as many structures in W isomorphic to V as there are in V or exactly jn+m

structures inW isomorphic to V . Obviously
∑
W is a combination of U with coefficients

≤ (in+m)U∈U . By the comment immediately following Corollary 7.18, stating that this

corollary with “k, r,m-equivalent” replaced by “isomorphic” still holds for sets U ,V 6= ∅

of structures with pairwise disjoint domains over an infinite set of symbols,
∑
V ≡k,jr,m∑

W . By Proposition 7.19 there are j0 ≤ j ≤ i and a j0r-sequence w to dom(
∑
W)

with ϕj0(
∑
W , w) ≡l Ū , whence Ū is ϕ-derivable in j0 steps from

∑
W . ♦

Corollary 7.27 Corollary 7.21 still holds, if U is finite. ♦
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7.3 Application of Theorem 7.7 to k- and 〈l, k〉-paths

As an illustration of the use of Theorem 7.7, we apply it to k- and 〈l, k〉-paths. These

examples will show how Theorem 7.7 allows to obtain decent upper bounds for the size

of a sufficient combination. The meaning of n/m has been given in Section 7.2.

Let r,m, i, n ∈ N, m ≥ 2, i, n 6= 0, r = n2 and

Q =≡2,((in)/1)·2,m, . . . ,≡2,((in)/(in))·2,m,≡m, . . . ,≡1 .

We define hj and h̄j (1 ≤ j ≤ in+m) through

hj = 2m((in)/j + 1) + 2((in)/j)− 1, if 1 ≤ j ≤ in;

hin+j = 2m−j+1, if 1 ≤ j < m;

hin+m = 1;

h̄j is the smallest even number ≥ hj + (in)/j − 1, if 1 ≤ j ≤ in;

h̄in+j = hin+j, if 1 ≤ j < m;

h̄in+m = 2.

We begin with the application to k-paths. Let Uk (k ∈ N) be the k-path with domain

{0, . . . , k + 1}, PUk(0) and RUk
1 (i, j) iff j = i + 1 (0 ≤ i ≤ j ≤ k + 1). We set

Uk = {Uj | 0 ≤ j ≤ k} and K = {Uk | k ∈ N}. Obviously the class of all structures

that are k- paths for some k ∈ N is the class of all structures isomorphic to a structure

in K.
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We now introduce a Q-combination function α over K by setting:

α(Uk) = 1, if h2 ≤ k;

α(Uk) = j, if hj+1 ≤ k < hj and 2 ≤ j < in+m;

α(U0) = in+m.

(1)

Given that, by Theorem 6.3, Uhj is a choice set of K/Qj−1 and that

h1 − hj + 2 > 2j, (2)

whence h1−hj+1 > j, for all 2 ≤ j ≤ in+m, we obtain that α is really a Q-combination

function over K. We have that

|K|Q = 1 +
in+m∑
j=1

hj = (2m + 2)
in∑
j=1

(in)/j + 2m(in+ 2)− in− 2.

Assume that ϕ is a modulo 2 connected interpretation for {P,Q,R1} of range r and

m = iqr(ϕ) +m0 (m0 ∈ N). With Theorem 7.7 we conclude:

Proposition 7.26 A first-order property expressible in {P,Q,R1} with quantifier rank

m0 is ϕ-derivable in ≤ i steps from a combination of K iff it is ϕ-derivable in ≤ i

steps from a combination of Uh1 with coefficients ≤ α and therefore from an at most

|K|Q-combination of Uh1. ♦

We now turn to the application of Theorem 7.7 to 〈l, k〉-paths. Let Ul,k (l, k ∈ N) be the

〈l, k〉-path with domain {0, . . . , l + k + 2}, PUl,k(0) and for all 0 ≤ i ≤ j ≤ l + k + 1

R
Ul,k
1 (i, j) iff j = i+ 1 and one of the two conditions i > l or i even holds,

R
Ul,k
2 (i, j) iff j = i+ 1, i ≤ l and i odd.
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Assume that ϕ is a modulo 2 connected interpretation for {P,Q, S,R1, R2} of range r

and m = iqr(ϕ) +m0 (m0 ∈ N). With Theorem 7.7 we conclude:

Proposition 7.27 A first-order property expressible in {P,Q, S,R1, R2} with quantifier

rank m0 is ϕ-derivable in ≤ i steps from a combination of L iff it is ϕ-derivable in ≤ i

steps from a combination of Uh̄1,h1
with coefficients ≤ α and therefore from an at most

M-combination of Uh̄1,h1
. ♦

To give a numerical example of Proposition 7.26, set r = 4, which implies n = 2,

m = 6, i = 4 and qr(ϕ) = 1.

((in)/j)1≤j≤in = (8/j)1≤j≤8 = 8, 4, 2, 2, 1, 1, 1, 1,

Q =≡2,(8/1)·2,6, . . . ,≡2,(8/8)·2,6,≡6, . . . ,≡1,

(hj)1≤j≤14 = 591, 327, 195, 195, 129, 129, 129, 129, 64, 32, 16, 8, 4, 1,

|U|Q = 1950.

Hence, with α as in (1), a first-order property expressible in {P,Q,R1} with quantifier

rank 2 is ϕ-derivable in 4 steps from a combination ofK iff it is ϕ-derivable in 4 steps from

a combination of U591 with coefficients ≤ α, whence from an at most 1950-combination

of U591.

Now let’s give a numerical example of Proposition 7.27. We set r = 4, which implies

n = 2, m = 5, i = 3 and qr(ϕ) = 1.

((in)/j)1≤j≤in = (6/j)1≤j≤6 = 6, 3, 2, 1, 1, 1,

Q =≡2,(6/1)·2,5, . . . ,≡2,(6/6)·2,5,≡5, . . . ,≡1,
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(hj)1≤j≤11 = 235, 133, 99, 65, 65, 65, 32, 16, 8, 4, 1,

(h̄j)1≤j≤11 = 240, 136, 100, 66, 66, 66, 32, 16, 8, 4, 2,

M = 49666.

Hence, with α as in (3), a first-order property expressible in {P,Q, S,R1, R2} with

quantifier rank 2 is ϕ-derivable in 3 steps from a combination of L iff it is ϕ-derivable

in 3 steps from a combination of U240,235 with coefficients ≤ α, whence from an at most

49666-combination of U240,235.

On one hand, as we announced at the beginning of this section, the upper bounds 591

and 1950 respectively (240, 235) and 49666, are of decent size. On the other hand, they

may indicate, against an intuitional approach, that first-order properties of quantifier

rank 2 could be ϕ-derivable in 4 respectively 3 steps from K respectively L, without

being ϕ-derivable from very small combinations.

As a third example, let U = {U36,52, U36,51, U34,52, U34,51, U16,51, U16,52, U16,53, U16,54}

and Q = ≡2,8,4,≡2,4,4,≡2,2,4,≡2,2,4,≡4,≡3,≡2,≡1. As we did in the two previous ex-

amples, in order to apply Theorem 7.7 to U , we aim at constructing a Q-combination

function over U . For this purpose we first build a Q-contraction of a combination set

U ′ of U with coefficients (8)U∈U . A Q-contraction is obtained from a full Q-choice C

of U ′. Because of Proposition 6.26 U is a choice set of U/Q0, whence we can set C0 to

be a combination set of U with coefficients (1)U∈U . Because of Proposition 6.26 and

Proposition 6.22 we have

U/Q1 = {{U36,52, U36,51}, {U34,52, U34,51}, {U16,51, U16,52, U16,53, U16,54}},
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whence C1 = ∅;

U/Q2 = {{U36,52, U36,51, U34,52, U34,51}, {U16,51, U16,52, U16,53, U16,54}}, whence C2 = ∅;

U/Q3 = U/Q2, whence C3 = ∅.

Finally, by Proposition 6.22, C4 = {U}, whence C4 = C5 = C6 = C7 = ∅. Therefore C0 is

a Q-contraction of U ′ and (1)U∈U a Q-combination function over U .

Let ϕ be a modulo 2 connected interpretation for {P,Q, S,R1, R2} of range 4 with

qr(ϕ) = 1. Theorem 7.7 implies that a first-order property expressible in {P,Q, S,R1, R2}

with quantifier rank 2 is ϕ-derivable in ≤ 2 steps from a combination of U iff it is ϕ-

derivable in ≤ 2 steps from a combination of U with coefficients ≤ (1)U∈U .

In the case that α is a combination function over U with α(V ) 6= 0 for all V ∈ U

and V a combination set of U with coefficients α, C0 can be set to be a Q-contraction of

V , as our previous construction easily shows. By Corollary 7.15
∑
C0 ≡2,8,4

∑
V . With

Proposition 7.17 and Proposition 7.19 we obtain that a first-order property expressible

in {P,Q, S,R1, R2} with quantifier rank 2 is ϕ-derivable in ≤ 2 steps from a combination

of U with coefficients α iff it is ϕ-derivable in ≤ 2 steps from a combination of U with

coefficients (1)U∈U (i. e. from
∑
C0).

As a final example we consider the set V = U ∪ {U34,34}, where U is the set in the

third example. It is left as an excercise for the reader to show that β : V → N with

β(U) = 1, if U ∈ U ; β(U34,34) = 2

is Q-combination function over V , while V is a choice set of V/Q0, where Q is again

as in the third example. Theorem 7.7 yields that a first-order property expressible in
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{P,Q, S,R1, R2} with quantifier rank 2 is ϕ-derivable in ≤ 2 steps from a combination

of V iff it is ϕ-derivable in ≤ 2 steps from a combination of V with coefficients ≤ β.

7.4 Weakly invertible interpretations

Till the end of this section let L be a set of relation symbols.

An interpretation ϕ for L of range r is called weakly invertible iff there is an inter-

pretation ψ for L of range r satisfying for all U ∈ dom(ϕ)

(ψ ϕ)(U, (cr+i : cUi )0≤i<r) = U �L (4)

and for all U ∈ dom(ψ)

(ϕψ)(U, (cr+i : cUi )0≤i<r) = U �L. (5)

Alternatively, satisfying for all structures U over L and all r-sequences u to dom(U)

if (U, u) ∈ dom(ϕ), (ψ ϕ)(U, u, u) = U ,

if (U, u) ∈ dom(ψ), (ϕψ)(U, u, u) = U .

Proposition 7.28 There is exactly one interpretation ψ for L of range r satisfying (4)

for all U ∈ dom(ϕ) and (5) for all U ∈ dom(ψ), if there is one. This ψ is written ϕ′.

Proof. Assume that (4) holds for all U ∈ dom(ϕ), (5) holds for all U ∈ dom(ψ) and,

with ψ = φ, that (4) holds for all U ∈ dom(ϕ), (5) holds for all U ∈ dom(φ). First

remark that, if U ∈ dom(φ), then (φ(U), (cUi )0≤i<r) ∈ dom(ϕ). Suppose U 6∈ dom(ψ).
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If U ∈ dom(φ), then

U �L = ψ((ϕφ)(U, (cr+i, c2r+i : cUi )0≤i<r)) = (ψ ϕ)(φ(U), (cUi )0≤i<r, (cr+i : cUi )0≤i<r)

= φ(U),

which is a contradiction. Hence U 6∈ dom(φ). This proves ψ(U) = U �L = φ(U). Now

suppose U ∈ dom(ψ). Then, analogously to the previous remark, (ψ(U), (cUi )0≤i<r) ∈

dom(ϕ). Thus

φ(U) = φ((ϕψ)(U, (cr+i, c2r+i : cUi )0≤i<r)) = (φϕ)(ψ(U), (cUi )0≤i<r, (cr+i : cUi )0≤i<r)

= ψ(U). ♦

Proposition 7.29 Assume that ϕ is a weakly invertible interpretation for L of range r,

U, V ∈ dom(ϕ) and f an isomorphism from ϕ(U) to ϕ(V ) with f(cUi ) = cVi (0 ≤ i < r).

Then f is an isomorphism from U to V .

Proof. f is an isomorphism from (ϕ(U), (cUi )0≤i<r) to (ϕ(V ), (cVi )0≤i<r). Hence from U �

L = ϕ′(ϕ(U), (cUi )0≤i<r) to V �L = ϕ′(ϕ(V ), (cVi )0≤i<r). Given that U = U �L, (cUi )0≤i<r

and V = V �L, (cVi )0≤i<r, we obtain the claim. ♦

Let r ∈ N and ϕ be a weakly invertible interpretation for L of range r.

Proposition 7.30 Let γ be a sentence in Lr. ϕ|γ is weakly invertible and

(ϕ|γ)′ = ϕ′|(γ ϕ′)[cr, . . . , c2r−1 : c0, . . . , cr−1].

Proof. Let U ∈ dom(ϕ|γ). To simplify the notation we set

U+ = (U, (cr+i : c
U
i )0≤i<r), c = c0, . . . , cr−1, c

+ = cr, . . . , c2r−1, c
++ = c2r, . . . , c3r−1.
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We first want to prove that

(ϕ′|(γ ϕ′)[c+ : c])(ϕ|γ)(U+) = U �L.

We immediately obtain that U |= γ, otherwise (ϕ|γ)(U) = U � L. This implies

(ϕ|γ)(U) = ϕ(U). Hence ϕ(U) 6= U �L. The following equivalences hold:

U |= γ iff

(ϕ′ ϕ)(U+, (c2r+i : c
U
i )0≤i<r) |= γ iff [Theorem 7.4]

(U+, (c2r+i : c
U
i )0≤i<r) |= γ (ϕ′ ϕ) iff

U+ |= (γ (ϕ′ ϕ))[c++ : c+] iff [Corollary 7.11]

U+ |= ((γ ϕ′)ϕ)[c++ : c+] iff

U+ |= ((γ ϕ′)[c+ : c])ϕ iff [Theorem 7.4]

ϕ(U+) |= (γ ϕ′)[c+ : c].

With the conclusions just obtained, we can write:

(ϕ′|(γ ϕ′)[c+ : c])(ϕ|γ)(U+) = (ϕ′|(γ ϕ′)[c+ : c])(ϕ(U+)) = ϕ′(ϕ(U+)) = U �L.

Now let U ∈ dom(ϕ′|(γ ϕ′)[c+ : c]). We show that

(ϕ|γ)(ϕ′|(γ ϕ′)[c+ : c])(U+) = U �L.

Again, we immediately obtain that U |= (γ ϕ′)[c+ : c]. This implies (ϕ′|(γ ϕ′)[c+ :

c])(U) = ϕ′(U). Hence ϕ′(U) 6= U �L. We have the equivalences:

U |= (γ ϕ′)[c+ : c] iff U+ |= (γ ϕ′) iff ϕ′(U+) |= γ.

With these conclusions we can again write:

192



L. Ermanni References

[5] C. C. Chang, H. J. Keisler, Model Theory, 3rd ed., Dover Publications, Inc., Mine-

ola, New York, 2012, pp. 211–223.

[6] W. Hodges, A shorter model theory, Cambridge University Press, Cambridge, 1997,

pp. 237–249.
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8 Preservation theorems

The question that probably condenses in the best way all questions asked in this book

is: “What can we state about ~ϕ(C)?” given an interpretation ϕ for L and a class C

of structures over L. For example, as a consequence of Proposition 7.5, if C is closed

under isomorphisms, so is ~ϕ(C). As we will see, for a sentence θ in L, if ϕ is weakly

invertible, ~ϕ(modL(θ)) is closed under elementary equivalence. On the other hand, it is

not necessarily closed under ultraproducts (while modL(θ), indeed, is).

In this chapter we study certain preservation properties of axiomatizable classes of

structures. This study is mainly another presentation of known model theoretical results

[1]. If ~ϕ(modL(θ)) is axiomatizable and ϕ quantifier-free as well as weaky invertible, these

preservation properties of modL(θ) translate into corresponding preservation properties

of ~ϕ(modL(θ)).

For structures U, V over a set S of symbols, Σ a set of sentences in S and α a

cardinal we write U ⇒Σ V iff every sentence in Σ true in U is true in V and call U , for

simplicity under the harmless assumption that dom(U)∩S = ∅, α-saturated iff for every

A ⊆ dom(U) with |A| < α the expansion (U,A) realizes all sets of formulas ξ(x0) in S∪A

consistent with Th(U,A). Generalizing the definition of m-sequence and of sequence,

an α-sequence (to the set A or of elements of A) is a function u with dom(u) = α

(rg(u) ⊆ A) in which u(γ) is denoted by uγ for all γ < α. Given vγ for all γ < α, we

write (vγ)γ<α to designate the α-sequence u with uγ = vγ for all γ < α.
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Let L be a set of symbols, α a cardinal, U, V structures over L and c an injective

α-sequence of constants not in L. For γ < α, a structure W over L and a γ-sequence w

to dom(W ) we denote by (W,w) the expansion (W, (cδ: wδ)δ<γ).

Proposition 8.1 Let v be an α-sequence to dom(V ). Assume U ⇒ΠL
i
V (1 ≤ i ∈ N)

and that U is α-saturated. Then there is an α-sequence u to dom(U) with

(U, u)⇒
Π

L∪{cγ | γ<α}
i

(V, v).

Proof. By transfinite induction over α, we form an increasing (with respect to the

restriction property) α-sequence (uγ)γ<α of γ-sequences uγ to dom(U) satisfying for all

γ < α

(U, uγ)⇒
Π

L∪{cδ | δ<γ}
i

(V, v|γ). (1)

By hypothesis (1) holds for γ = 0. If γ is a limit ordinal set uγ =
⋃
δ<γ u

δ. Let γ < α

and ∆ be the set of all sentences in Σ
L∪{cδ | δ≤γ}
i that hold in (V, v|(γ+1)). Th(U, uγ)∪∆

is consistent. Otherwise there would be a sentence in Σ
L∪{cδ | δ<γ}
i true in (V, v|γ), but

failing in (U, uγ), which contradicts the induction hypothesis. Since U is α-saturated

there is an expansion (U, uγ, cγ : a) of (U, uγ) satisfying ∆. This ends the transfinite

induction over α. Now set u =
⋃
γ<α u

γ. ♦

For the next Proposition 8.2 and Proposition 8.3 assume L ∩ dom(V ) = ∅.

Proposition 8.2 Suppose U ⇒ΠL
i
V (1 ≤ i ∈ N). Then there is U0 over L with

dom(V ) ⊆ dom(U0) such that U is elementarily embedded into U0 and

(U0, dom(V ))⇒
Π

L∪dom(V )
i

(V, dom(V )).
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Proof. Let α be a cardinal with α ≥ |dom(V )|. There is an α-saturated U0 into which U

is elementarily embedded [2]. Let v be an α-sequence of elements of dom(V ) surjective

to dom(V ) (in other words, an α-sequence which is an enumeration of dom(V )). By

Proposition 8.1 there is an α-sequence u to dom(U0) with (U0, u) ⇒
Π

L∪{cγ | γ<α}
i

(V, v).

Indeed, we can assume u = v. This means (U0, dom(V )) ⇒
Π

L∪dom(V )
i

(V, dom(V )) and

that U0 is as in the claim. ♦

Proposition 8.3 Assume dom(U) ⊆ dom(V ) and (U, dom(U))⇒
Π

L∪dom(U)
i+1

(V, dom(U))

(i ∈ N). Then there is an elementary extension U0 of U with dom(V ) ⊆ dom(U0) and

(V, dom(V ))⇒
Π

L∪dom(V )
i

(U0, dom(V )).

Proof. Let ∆ be the set of sentences in Π
L∪dom(V )
i true in (V, dom(V )). Th(U, dom(U))∪

∆ is consistent. Otherwise there would be a sentence in Σ
L∪dom(U)
i+1 true in (V, dom(U)),

but false in (U, dom(U)), contradicting the hypothesis. Therefore there is U0 as in the

thesis. ♦

Proposition 8.4 Assume dom(U) ⊆ dom(V ). If (U, dom(U))⇒
Π

L∪dom(U)
i

(V, dom(U))

(1 ≤ i ∈ N), then there are structures U0, . . . , Ui−1 over L with

V ⊆ U0 ⊆ . . . ⊆ Ui−1,

U � U0,

Uj � Uj+2 (0 ≤ j < i− 2) and

V � U1, if i ≥ 2.
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Lemma 8.1 Assume that if U |= T and U ⇒ΠL
i
V , then V |= T (i ∈ N). Then T is

axiomatized by a set of sentences in ΠL
i .

Proof. Let ∆ be the set of all sentences in ΠL
i that follow from T. Assume V |= ∆. Let

Γ be the set of all sentences in ΣL
i that hold in V . T∪Γ has a model U . Otherwise there

would be a sentence in ∆ failing in V , which is a contradiction. U |= T and V ⇒ΣL
i
U ,

whence U ⇒ΠL
i
V . By hypothesis V |= T. ♦

In a completely analogous way the following lemma can be proven:

Lemma 8.2 Assume that if U |= T and U ⇒ΣL
i
V , then V |= T (i ∈ N). Then T is

axiomatized by a set of sentences in ΣL
i . ♦

Theorem 8.2 Let 1 ≤ i ∈ N and T be a theory in L. modL(T ) is preserved under

i-sandwiches iff T is axiomatized by a set of sentences in ΠL
i . If T is finite and modL(T )

is preserved under i-sandwiches, then it is axiomatized by a sentence in ΠL
i .

Proof. Assume modL(T ) is preserved under i-sandwiches. By Theorem 8.1, if U |= T

and U ⇒ΠL
i
V , then V |= T. With Lemma 8.1 T is axiomatized by a set of sentences in

ΠL
i . The other direction is obvious, given Theorem 8.1. By Compactness, if T is finite,

it follows already from a finite set of sentences in ΠL
i . ♦

Using Corollary 8.1 instead of Theorem 8.1 and Lemma 8.2 instead of Lemma 8.1

we obtain:
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dom(U) = {0, 1} and (U, {0, 1}) |= ( (¬R 0 0↔ R 1 1)∧

(R 0 1↔ R 1 0) )}.

Let F: U → U map A to Ã, C to C̃, every U ∈ A∪{B,D} to ¬U and every U ∈ U \(A∪

{A,B,C,D}) to U . F is monotonic and injective. Its inverse F−1 is also monotonic.

By Proposition 7.35 ΦF is a quantifier-free, invertible interpretation for S1 of range 0.

Since, by Corollary 7.5, ΦF (U) = F (U) for all structures U over S1, the interpretation

ΦF , said in a simplified way, replaces every at most 2-element substructure, depending

on its isomorphism type, according to the instructions delivered by F .

Let V be a finite set of finite, connected 1-multigraphs. By Corollary 8.2 ~ΦF (cmb(V))

is preserved under 2-sandwiches (and, indeed, by Corollary 7.14, also under unions of

chains).
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9 Axiomatization and preservation

For a weakly invertible interpretation ϕ over a set L of relation symbols and a sentence

θ in L we explicitly formulate a sentence in L that axiomatizes the class ϕ(modL(θ))

of all structures that ϕ defines in a model over L of θ, one that axiomatizes the class

ϕ≤i(modL(θ)) of all structures that are ϕ-derivable in ≤ i steps from a model over L of

θ and, consequently, also one that axiomatizes ϕi(modL(θ)) (i ∈ N). These sentences

are further used to establish, for a theory T in L, when ϕ(modL(T)) is axiomatizable.

For a finite set U of finite, connected structures over L we can infer from the existence

of these sentences that the axiomatizability of ~ϕ(cmb(U)) (the class of all structures that

are ϕ-derivable from a combination of U) implies the decidability of the ϕ-derivability

problem for cmb(U) and, hence, of Th(~ϕ(cmb(U))).

Finally we are able in this chapter to use the main result of the previous chapter in

determining which preservation properties of θ allow us to draw a conclusion about a cor-

responding preservation property of ~ϕ(modL(θ)), if ϕ is quantifier-free, weakly invertible

and ~ϕ(modL(θ)) axiomatizable. This conclusion yields, of course, a necessary condition

for ~ϕ(modL(θ)) to be axiomatizable, if ϕ is quantifier-free and weakly-invertible.

For this whole chapter let L be a set of relation symbols.

Let m ∈ N and θ be a sentence in Lm. We set for an interpretation ϕ for L of range r

δθ,ϕ = (ζϕ ∧ θ ϕ);

σθ,ϕ = (¬ζϕ ∧ θ[c0, . . . , cm−1 : cr, . . . , cr+m−1]).
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(ϕ′(U � L, u), w) |= θ. From the initial assumption ϕ′(U � L, u) 6= U � L, whence (U �

L, u) |= ζϕ′ . Thus U |= ζϕ′ [s : t][v]. Again from the initial assumption U |= δθ,ϕ′ [s : t][v].

(b) Assume U |= θ ϕ′[s : t][v]. If (U � L, u) |= ζϕ′ , U |= ζϕ′ [s : t][v], whence U |=

δθ,ϕ′ [s : t][v] and, consequently, U |= ρθ,ϕ[s : t][v]. Otherwise, ϕ′(U � L, u) = U � L.

From the initial assumption (U � L, u, w) |= θ ϕ′ and, therefore, ϕ′(U � L, u, w) |= θ.

Hence U |= θ, whence U |= θ[c0, . . . , cm−1 : cr, . . . , cr+m−1][s : t][v]. Since ϕ is invertible,

ϕ(U �L, u) = U �L. Thus (U �L, u) |= ¬ζϕ, whence U |= ¬ζϕ[s : t][v]. We obtain that

U |= σθ,ϕ[s : t][v] and, consequently, U |= ρθ,ϕ[s : t][v].

For the converse, avoiding the trivial case U |= δθ,ϕ′ [s : t][v], assume U |= σθ,ϕ[s : t][v].

Then ϕ(U � L, u) = U � L and U |= θ. Since ϕ is invertible, ϕ′(U � L, u, w) = U |= θ.

Therefore (U �L, u, w) |= θ ϕ′, whence U |= θ ϕ′[s : t][v]. ♦

Theorem 9.1 (a) U |= ρθ,ϕ[s : t][v] iff U = ϕ(V, u, w) for a structure V over L with

(V,w) |= θ.

(b) U |= (θ ∨ θ ϕ′[s : t])[v] iff U |= θ or U = ϕ(V, u, w) for a structure V over L with

(V,w) |= θ.

(c) If ϕ is invertible, U |= θ ϕ′[s : t][v] iff U = ϕ(V, u, w) for a structure V over L with

(V,w) |= θ.

Proof. We just prove (a), since (b) and (c) follow easily from (a) and Lemma 9.2. Assume

U |= δθ,ϕ′ [s : t][v]. By Lemma 9.1 (a) (U �L, u) ∈ dom(ϕ′) and ϕ′(U �L, u, w) |= θ, which

implies, by setting V = ϕ′(U �L, u), U = ϕ(V, u, w) and (V,w) |= θ.
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Theorem 9.2 The following statements are equivalent for all i ∈ N:

(i) The rank of θ, ϕ is i.

(ii) i is the least k ∈ N with |= (
∨
j∈N ξj ↔

∨
0≤j≤k ξj).

(iii) i is the least elementary bound of θ, ϕ.

Proof. (i) ⇒ (ii). Left as an exercise for the reader. (Indeed, use Corollary 9.2.) (ii)

⇒ (iii). Assume (ii). If the sentence φ in L is ϕ-derivable from some U ∈ modL(θ),

then φ is consistent with
∨
j∈N ξj, whence with

∨
0≤j≤i ξj. Therefore i is an elementary

bound of θ, ϕ. Assume there is an elementary bound k < i of θ, ϕ. Because of (ii)∧
0≤j≤k ¬ξj is consistent with

∨
j∈N ξj, whence ϕ-derivable from some U ∈ modL(θ).

Since k is an elementary bound of θ, ϕ,
∧

0≤j≤k ¬ξj is consistent with
∨

0≤j≤k ξj, which

is a contradiction. This proves that i is the least elementary bound of θ, ϕ. (iii) ⇒ (i).

Assume (iii). Obviously the rank of θ, ϕ is ≥ i. Assume it is > i. Then
∧

0≤j≤i ¬ξj is

ϕ-derivable from some model of θ over L, whence ϕ-derivable in ≤ i steps from some

U ∈ modL(θ), which implies that it is consistent with
∨

0≤j≤i ξj, which is a contradiction.

This proves that the rank of θ, ϕ is i. ♦

Corollary 9.4 The following statements are equivalent:

(i) ~ϕ(modL(θ)) is axiomatizable.

(ii)
∨

0≤j≤i ξj axiomatizes ~ϕ(modL(θ)) for some i ∈ N.
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all j ∈ N. With Corollary 7.13 the rank of θ, ϕ is not ∞. The claim is now immediate

from Corollary 9.4, since r = 0 in the definition of ξj. ♦

Theorem 9.4 Assume 1 ≤ i ∈ N, ϕ is quantifier-free and one (and thus all) of (i) -

(iv) in Corollary 9.4 holds.

(a) If θ is preserved under i-sandwiches, ~ϕ(modL(θ)) is preserved under i+ 1-fillings.

(b) If θ is preserved under i-fillings, ~ϕ(modL(θ)) is also preserved under i-fillings.

Proof. Direct consequence of Corollary 9.6, Theorem 8.2 and Theorem 8.3. ♦

Theorem 9.5 Assume 1 ≤ i ∈ N, ϕ is quantifier-free, of range 0 and θ is preserved

under i-sandwiches respectively under chains. Then ~ϕ(modL(θ)) is also preserved under

i-sandwiches respectively under chains.

Proof. Direct consequence of Corollary 9.7, Theorem 8.2 and the model theoretical

result that a sentence in L belongs to ΠL
2 iff it is preserved under chains. ♦

As an example let’s go back to the interpretation ΦF in the example at the end

of Chapter 8 and let ϑ be any sentence in ΠS1
i . Then i ≥ 1 and, by Theorem 8.2, ϑ

is preserved under i-sandwiches. By Theorem 9.5 ~ΦF (modS1(ϑ)) is preserved under i-

sandwiches. If ϑ is in ΣS1
i , then, by Theorem 8.3, it is preserved under i-fillings, whence,

by Theorem 9.4, ~ΦF (modS1(ϑ)) is preserved under i-fillings.

It is perhaps worth at this point to examine the particular case in which ϕ is

quantifier-free and θ ∈ ΣL
2 (i. e. θ is existential-universal). In this case Theorem 9.2

can be reformulated in the following way:
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Proposition 9.1 The following statements are equivalent for all i ∈ N:

(i) The rank of θ, ϕ is i.

(ii) i is the least k ∈ N with |= (
∨
j∈N ξj ↔

∨
0≤j≤k ξj).

(iii) i is the least ΠL
2 -bound of θ, ϕ.

Proof. Same as in the proof of Theorem 9.2 by considering that, under the assumption,∧
0≤j≤k ¬ξj is (equivalent to) a universal-existential sentence. ♦

Proposition 9.2 If the rank of θ, ϕ is not ∞, then the ϕ-derivability problem for

modL(θ),ΣL
2 is solvable.

Proof. By Corollary 9.4, if the rank of θ, ϕ is not ∞,
∨

0≤j≤i ξj axiomatizes ~ϕ(modL(θ))

for some i ∈ N. Thus the sentence δ in L is ϕ-derivable from a model over L of θ iff

6|= (
∨

0≤j≤i ξj → ¬δ). If δ ∈ ΣL
2 , then (

∨
0≤j≤i ξj → ¬δ) ∈ ΠL

2 , whence its (logical)

validity is decidable. ♦

We now examine more specifically the class cmb(U) of all combinations of a finite

set U of finite, connected structures over L.

Till the end of this chapter assume that L is finite.

The sentence ϑU was defined in Section 2.5 and satisfies cmb(U) = modL(ϑU). We set

ξj = ∃c0 . . . cjr−1ϑU ϕ
′j (j ∈ N) and T = Th(~ϕ(cmb(U))).

We begin with a necessary and sufficient condition for T to be decidable (or equiva-

lently for the ϕ-derivability problem for cmb(U) to be solvable):
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Then U ∈ ~ϕ(cmb(U)) implies U ∈ ϕ≤k(cmb(U)), whence U |=
∨
j≤k ξj. It follows that∨

j≤k ξj axiomatizes ~ϕ(cmb(U)), which yields

φ ∈ T iff |= (
∨
j≤k

ξj → φ).

From Proposition 9.3 T is decidable. From Corollary 7.3 the elementary ϕ-derivability

problem for cmb(U) is solvable. This ends our proof.

Theorem 9.6 The following statements are equivalent for all i ∈ N:

(i) The rank of cmb(U), ϕ is i.

(ii) i is the least k ∈ N with |= (
∨
j∈N ξj ↔

∨
0≤j≤k ξj).

(iii) i is the least elementary bound of cmb(U), ϕ.

(iv) i is the least elementary bound of cmb(U), ϕ in the finite.

(v) i is the least k ∈ N for which (
∨
j∈N ξj ↔

∨
0≤j≤k ξj) holds in all finite structures

over L.

(vi) The rank of cmb(U), ϕ in the finite is i.

Proof. (i) ⇔ (ii) ⇔ (iii) is Theorem 9.2. (iv) ⇔ (v) ⇔ (vi) is Theorem 9.3. (iii) ⇔ (iv)

is Corollary 7.23. ♦
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ΦF
R1

can be written:

(γ0 ∧ ¬((x0 = c0 ∧ x1 = c1) ∨ (x0 = c1 ∧ x1 = c0)) ∧ ¬R1x0x1) ∨

(γ1 ∧ ((x0 6= x1 ∧R1x0x1) ∨ (x0 = x1 ∧ ¬R1x0x0)) ∨

(¬γ0 ∧ ¬γ1 ∧R1x0x1).

So far we have investigated the axiomatizability of ϕ(modL(θ)) and ~ϕ(modL(θ)), when θ

is a sentence in L. Now we investigate the axiomatizability of ϕ(modL(T)) for a theory

T in L. The result obtained leads to the suspect that, more often than not, ϕ(modL(T))

is not axiomatizable.

For a set S of symbols, a theory T in S and a set Σ of formulas γ(x0, . . . , xn−1) in

S, we write, following the known model theoretical definition, that Σ is principal over

T (with respect to n, S) iff there is a formula γ(x0, . . . , xn−1) in S consistent with T

that implies in T every formula in Σ (i. e. such that T |= (γ → φ) for all φ ∈ Σ). Σ is

principal (with respect to n, S) iff it is principal (with respect to n, S) over all complete

theories in S consistent with Σ (i. e. over all theories in S consistent with Σ satisfying

for all sentences φ in S that exactly one of φ, ¬φ follows from the theory).

By the Omitting Type Theorem, if S is countable, T is consistent and Σ is not

principal over T (with respect to n, S), then some model of T over S omits Σ (i. e. does

not realize Σ).

Let T be a theory in L (that has been assumed to be finite) and Σ = {ργ,ϕ | γ ∈ T}.

Proposition 9.6 For all structures U over L, if U ∈ ϕ(modL(T)), then U realizes Σ.
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Proof. Assume U ∈ ϕ(modL(T)). Then there is a structure V over L and an r-sequence v

to dom(V ) such that U = ϕ(V, v) and V |= γ for all γ ∈ T. Hence there is an r-sequence

v to dom(U) such that for all γ ∈ T there is V |= γ over L with dom(V ) = dom(U) and

U = ϕ(V, v). Theorem 9.1 (a) with m = 0, i = r implies that there is an r-sequence v

to dom(U) such that (U, v) |= ργ,ϕ for all γ ∈ T. Thus U realizes Σ. ♦

For principal Σ Proposition 9.6 can be strengthen.

Proposition 9.7 Suppose that Σ is principal (with respect to r, L). Then for all struc-

tures U over L, if U |= Th(ϕ(modL(T))), then U realizes Σ.

Proof. Let U |= Th(ϕ(modL(T))). By Proposition 9.6 ∃c0 . . . cr−1

∧
∆ ∈ Th(ϕ(modL(T))

for every finite ∆ ⊆ Σ. Hence ∃c0 . . . cr−1

∧
∆ ∈ Th(U) for every finite ∆ ⊆ Σ. By Com-

pactness Σ∪Th(U) is consistent and Th(U) is a complete theory in L. By assumption Σ

is principal (with respect to r, L) over Th(U). By definition some formula γ(c0, . . . , cr−1)

in L consistent with Th(U) implies in Th(U) every formula in Σ. Th(U) |= ∃c0 . . . cr−1γ,

whence U |= ∃c0 . . . cr−1γ. Therefore U realizes Σ. ♦

T is called ϕ-uniform iff for all γ ∈ T, all V |= γ over L and all r-sequences v

to dom(V ) with ϕ(V, v) 6= V and ϕ(ϕ(V, v), v) = ϕ(V, v) we have ϕ(V, v) |= γ or

ϕ(V, v) 6|= φ for all φ ∈ T.

We have proven that if U ∈ ϕ(modL(T)), then U realizes Σ. Now we state a condition

under which the converse holds, too.

Proposition 9.8 Assume that T is ϕ-uniform. If U realizes Σ, then U ∈ ϕ(modL(T)).
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L, then {(γ ∧ φ) | γ ∈ T} is ϕ-uniform. By Proposition 9.8 U ∈ ϕ(modL(T”)), whence

U ∈ ϕ(modL(T)). Conversely, if U ∈ ϕ(modL(T)), then U ∈ ϕ(modL(T′)), whence,

with Proposition 9.6, U realizes Σ. ♦

Theorem 9.8 ϕ(modL(T)) is axiomatizable iff Σ is principal (with respect to r, L).

Proof. Assume Σ is principal and U |= Th(ϕ(modL(T))). Then U |= Th(ϕ(modL(T′))).

By Proposition 9.7 U realizes Σ. By Proposition 9.9 U ∈ ϕ(modL(T)). Assume Σ is

not principal. Let T̄ be a complete theory in L consistent with Σ over which Σ is not

principal (with respect to r, L). T̄ has a model that realizes Σ. By Proposition 9.9

Th(ϕ(modL(T))) ⊆ T̄ (or, more precisely, every sentence in Th(ϕ(modL(T))) follows

from T̄). By the Omitting Types Theorem T̄ has a model over L that omits Σ. Again

by Proposition 9.9 some model of Th(ϕ(modL(T))) is not in ϕ(modL(T)). ♦
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10 Local interpretations

The locality property is the last bit we need to narrow down interpretations to regular

and reactional ones. As written in the preamble of Chapter 7 the name “regular”

is derived from the latin word “regula”, which means rule. The locality property is

inspired by the shift operation of Chapter 3, which modifies an n-multigraph only within

the positions at which it is applied. Quantifier-free, local interpretations have a rather

simple, in a way, graphic model theoretical characterization by means of replacements,

which, in their turn, allow to build a correspondence between S-shift operations, for a

finite set S of finite n-rules, and interpretations. If ϕ is a quantifier-free interpretation

for Sn, defined at the beginning of Chapter 2, with the property that all H ∈ ϕ(G) are

similar to G for all n-multigraphs G, then locality ensures that there is a finite set S of

finite n-rules such that ϕ(G) is the set of all S-shifts of G for every n-multigraph G.

Let L be a set of relation symbols, ϕ an interpretation for L of range r and n ∈ N.

ϕ is called n-local iff U |= (Rx0 . . . xνR−1 ↔ ϕR)[u] for all R ∈ L, all structures U over

Lr and all νR-sequences u to dom(U) with {u0, . . . , uνR−1} 6⊆ nbn
U

({cU0 , . . . , cUr−1}). In

this definition we use the notation for nbn
U

given at the beginning of Chapter 6 (i. e.

nbn
U

= nbn
gf(U)

). ϕ is local iff it is 0-local. Until the beginning of Section 10.1 assume that

ϕ is n-local. We maintain the meaning of the expansion (U, u) of U given in Chapter 7.

Proposition 10.1 If n = 0 and ϕ is weakly invertible, then ϕ′ is n-local. ♦

Proposition 10.1 does not hold by omitting n = 0 in the premise. The inverse of the
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following 1-local, weakly invertible interpretation ψ for {R} (R 2-placed relation symbol)

of range 1 is not 1-local:

ψR = (((¬Rc0c0 ∧ ∀x0(Rx0x0 → (Rx0c0 ∧Rc0x0))) → (¬(x0 = c0 ∧Rx1x1)∧

¬(x1 = c0 ∧Rx0x0) ∧Rx0x1))

∧

(¬(¬Rc0c0 ∧ ∀x0(Rx0x0 → (Rx0c0 ∧Rc0x0))) → Rx0x1)).

In every structure over {c0, R}, where c0 does not have R with itself and all elements

that do, have R with c0 and c0 with them, ψ deletes precisely all edges, determined by

R, between c0 and an element that has R with itself. Its inverse is given by

ψ′R = (((¬Rc0c0 ∧ ∀x0(Rx0x0 → (¬Rx0c0 ∧ ¬Rc0x0))) → ((x0 = c0 ∧Rx1x1)∨

(x1 = c0 ∧Rx0x0) ∨Rx0x1))

∧

(¬(¬Rc0c0 ∧ ∀x0(Rx0x0 → (¬Rx0c0 ∧ ¬Rc0x0))) → Rx0x1)).

Proposition 10.2 Let U, V be structures over L with disjoint domains, W = U ⊕ V

and u an r-sequence to dom(U).

(a) ϕ(W,u) = ϕ(W,u)|dom(U)⊕ V .

(b) If ϕ is quantifier-free, ϕ(W,u) = ϕ(U, u)⊕ V .

Proof. (a) Assume that R ∈ L and v is a νR-sequence to dom(W ) with {v0, . . . , vνR−1} 6⊆

dom(U). Since

{v0, . . . , vνR−1} 6⊆ nbn
W

({u0, . . . , ur−1})
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and ϕ is n-local,

Rϕ(W,u)(v0, . . . , vνR−1) iff RW (v0, . . . , vνR−1).

(b) From Proposition 7.1 we obtain

ϕ(W,u)|dom(U) = ϕ(U, u).

Now use (a). ♦

Proposition 10.3 Let n ≤ 1 and ψ be an n-local interpretation for L of range s. Then

ψ ϕ is n-local.

Proof. Let R ∈ L, U be a structure over Lr+s, u a νR-sequence to dom(U) with

{u0, . . . , uνR−1} 6⊆ nbn
U

({cU0 , . . . , cUr+s−1}). Abbreviate U ′ = U � Lr. Using Theorem 7.4

we have:

U |= (ψ ϕ)R[u] iff U |= ψR ϕ[u] iff ϕ(U) |= ψR[u] iff

(ϕ(U ′), (cUr+i)0≤i<s) |= ψR[u].

(1)

By Proposition 2.3(a) there is a ∈ {u0, . . . , uνR−1} with

a 6∈ (nbn
U

({cU0 , . . . , cUr−1}) ∪ nbn
U

({cUr , . . . , cUr+s−1})). (2)

Therefore, keeping in mind that ϕ is n-local, for any Q ∈ L, any νQ-sequence v to

dom(U) with a ∈ {v0, . . . , vνQ−1}

U ′ |= ϕQ[v] iff QU(v0, . . . , vνQ−1). (3)
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where r = 4k + max{|dom(K)| − |{u0, . . . , u4k−1}| | (K, u) ∈ S} and vK,u is a surjective

sequence u, a to dom(K) for some m-sequence a with m = |dom(K)| − |{u0, . . . , u4k−1}|

((K, u) ∈ S).

Theorem 10.1 σ|δ is a reactional interpretation for Sn and H is an S-shift of G iff

σ|δ interprets H in G for all n-multigraphs G,H.

Proof. Follows from Lemma 10.1(f) and Proposition 3.10. ♦

It is easy to establish that the range of σ|δ is

4k + max{|dom(K)| − |{u0, . . . , u4k−1}| | (K, u) ∈ S}, if k > 0 and S 6= ∅;

4k, if k > 0 and S = ∅;

1, if k = 0.

In order to obtain two significant corollaries of Theorem 10.1, we start from T0 =

(S̃14, ρ0), I0 = (S̃14, σ0),H and H0 :=
∑
H, used in Corollary 5.3. We set δ0 to be

the value of the previously defined δ with S = arp14(T0) and δ1 the value of δ with

S = arp14(I0) (in both cases k = 2).

With Theorem 10.1 σ|δ0 and σ|δ1 are reactional interpretations for S14 of range ≤ 12

for which

H is an arp14(T0)-shift of G iff σ|δ0 interprets H in G and

H is an arp14(I0)-shift of G iff σ|δ1 interprets H in G

for all 14-multigraphs G,H. Corollary 5.3 yields
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Corollary 10.1 The σ|δ0-synthesizability problem for the class of finite U ⊆ Gd14 ∩

G1, srp14(∅), where ∅ is the empty word, and the σ|δ1-synthesizability problem for H (by

Corollary 7.1 also for {H0}), Gd14 ∩ G1 ∩ Gconn are unsolvable. ♦

With Corollary 9.8 and Corollary 9.9 we obtain

Corollary 10.2 σ~|δ0(cmb(H)) and σ~|δ0(cmb({H0})) (both ⊆ Gd14 ∩ G1) are not first-

order axiomatizable and are not closed under ultraproducts. ♦

With the introduction of replacements in the next section, we will be able to show

that for all finite sets S of finite n-rules there is a reactional interpretation ϕ for Sn such

that H is an S-shift of G iff ϕ interprets H in G for all n-multigraphs G,H. We will

also be able to prove its vice versa: For every quantifier-free, local interpretation ϕ for

Sn, carrying any n-multigraph at any position into a similar n-multigraph, there is a

finite set S of finite n-rules such that H is an S-shift of G iff ϕ interprets H in G for all

n-multigraphs G,H.

10.2 Replacements

We will need the definition of e
U,V

and of ∆U,u, given in Chapter 1, and of (U, u) given

at the beginning of Chapter 7. Recall that we do not distinguish between equivalent

interpretations. Let L be a set of relation symbols and r ∈ N.

An r-move for L is a pair (A,B), where A is a canonical structure over Lr and B a

structure over L with dom(B) = dom(A). The r-move (A,A�L) for L is called trivial.
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The r-moves (A,B), (A′, B′) for L are equivalent (or (A,B) is equivalent to (A′, B′)) iff

there is f: dom(A)→ dom(A′) that is an isomorphism from A to A′ and from B to B′,

or, said differently, iff A ∼= A′ and e
A,A′

is an isomorphism from B to B′. The sets P ,R

of r-moves for L are equivalent (or P is equivalent to R) iff every non-trivial element in

P is equivalent to an element in R and vice versa.

Let U, V be structures over L and u an r-sequence to dom(U). An r-move (A,B)

for L carries U into V at u iff A is embedded into (U, u) and V is the U -extension of B

by e
A,(U,u)

. A set R of r-moves for L carries U into V at u (or V is an application of R

to U at u) iff some (A,B) ∈ R carries U into V at u. R carries U into V (or V is an

application of R to U) iff it carries U into V at some r-sequence u to dom(U).

Proposition 10.7 If the r-moves (A,B) and (A′, B′) for L carry U into V at u, then

they are equivalent.

Proof. A and A′ are embedded into (U, u). Thus the composition f := e
(U,u),A′

◦e
A,(U,u)

is

an isomorphism from A to A′. But e
A,(U,u)

is an isomorphism from B to V |{u0, . . . , ur−1}

and e
(U,u),A′

from V |{u0, . . . , ur−1} to B′. Hence f is an isomorphism from B to B′. ♦

An r-replacement for L is a set R of r-moves for L for which (A,B) is equivalent

to (A′, B′) whenever A ∼= A′ for all (A,B), (A′, B′) ∈ R. A replacement for L is an

r-replacement for L for some r ∈ N. A replacement is a replacement for some set of

relation symbols.
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Proposition 10.8 If R is an r-replacement for L, U a structure over L and u an

r-sequence to dom(U), then there is at most one structure into which R carries U at u.

Proof. Immediate from the definition of r-replacement and of U -extension of B by f . ♦

Let L be a finite set of relation symbols and r ∈ N.

To every local interpretation ϕ for L of range r we associate a maximal set R of non-

trivial, (pairwise) non-equivalent r-moves (A,B) for L for which there is an extension

U ⊇ A with ϕ(U) ⊇ B. R is finite and unique up to equivalence. We denote it byMϕ.

ObviouslyMϕ carries U into ϕ(U, u) at u for all structures U over L and all r-sequences

u to dom(U) with ϕ(U, u) 6= U . For quantifier-free ϕ the converse holds, too:

Proposition 10.9 Assume that ϕ is quantifier-free and local. Then Mϕ is a replace-

ment and for all structures U 6= V over L, all r-sequences u to dom(U), if Mϕ carries

U into V at u, then V = ϕ(U, u).

Proof. As a consequence of Proposition 7.1, ϕ(A) = B for all (A,B) ∈Mϕ. This proves

thatMϕ is a replacement, because for any structuresW,Y over Lr, if f is an isomorphism

from W to Y , then f is an isomorphism from ϕ(W ) to ϕ(Y ). Suppose Mϕ carries U

into V at u. Then there is (A,B) ∈ Mϕ for which A is embedded into (U, u) and V

is the U -extension of B by e
A,(U,u)

. Since B = ϕ(A), e
A,(U,u)

(that is the isomorphism

from A to (U, u)|{u0, . . . , ur−1}) is an isomorphism from B to ϕ((U, u)|{u0, . . . , ur−1}) =

ϕ(U, u)|{u0, . . . , ur−1}. Therefore e
A,(U,u)

is an embedding from B into ϕ(U, u). Since ϕ

is local, ϕ(U, u) = V . ♦
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of G, with S a finite set of finite n-rules, and the class of the relations that hold for the

n-multigraphs G,H iff ϕ interprets H into G, where ϕ is a reactional interpretation for

Sn, are the same.

Theorem 10.3 For every finite set S of finite n-rules there is a non-multigraph pre-

serving, reactional interpretation ϕ for Sn and for every reactional interpretation ϕ for

Sn there is a finite set S of finite n-rules such that for all n-multigraphs G,H

H is an S-shift of G iff ϕ carries G into H.

Proof. Since sh(G, ∅) = G, with Proposition 10.19, it is enough to prove the theorem

for G 6= H. Let S be a finite set of finite n-rules and S ′ the set of the at least 1-fold

n-rules in S. Assume that all cardinalities of dom(K) with (K, a) ∈ S ′ are ≤ m and

all i for which there is an i-fold n-rule in S ′ are ≤ k. Set r = m + 4(k − 1). From

each j-fold n-rule (K, a) ∈ S ′ form an r-move (K̄, sh(K, a)) for Sn, where K̄ � Sn =

K, cK̄i = ai (0 ≤ i < 4j), cK̄4j = . . . = cK̄4k−1. Now build the set R of all r-moves formed

from some n-rule in S ′. A simple examination shows that R and R′ are replacements

(sh−1(sh(K, a), a) = K) and that for all n-multigraphs G and all structures V 6= G

over Sn

V is an S-shift of G iff R carries G into V .

By Proposition 10.11 and Proposition 10.16 ΨR is a regular interpretation for Sn of

range r such that for all structures U 6= V over Sn and all r-sequences u to dom(U)

ΨR(U, u) = V iff R carries U into V at u.

258



L. Ermanni 10 Local interpretations

An examination of the proof of Theorem 10.3 shows that for its second correspondence

the weak invertibility of ϕ is not needed. As a consequence we have actually proven a

slight strengthening of Corollary 10.7 (a).

Proposition 10.21 For every quantifier-free, local, similarity preserving interpretation

ϕ for Sn there is a reactional, non-multigraph preserving interpretation for Sn that, for

all n-multigraphs G,H, carries G into H iff ϕ carries G into H. ♦

Proposition 10.21 and Corollary 10.7 (b) yield a strengthening of Corollary 10.7 (b)

itself.

Proposition 10.22 For every quantifier-free, local, similarity preserving interpretation

ϕ for Sn there is a reactional interpretation ψ for Sn with ψ′ = ψ that, for all n-

multigraphs G,H, carries G into H iff ϕ carries G into H or H into G. ♦
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11 Reduction to a case of the logical decision prob-

lem

In this chapter, under the assumption that ϕ is quantifier-free, the ϕ-synthesizability

problem (for C0, C1) , stated in Chapter 7, is reduced to the finite satisfiability problem

for a set of first-order sentences (depending, of course, on ϕ, C0, C1). This reduction deliv-

ers gratuitously an undecidability result for the finite satisfiability problem of two classes

of sentences defined in a standard way (“almost” completely through the prefixes).

Let L be a finite set of relation symbols, ϕ an interpretation for L of range r and δ

a sentence in L. Notice immediately that the structure V over L is a ϕ-product of U iff

∆V is ϕ-derivable from U .

A ϕ-derivation tree (of δ from U0) is a sequence U0, . . . , Ul of structures over L (with

Ul |= δ) where for every 0 < i ≤ l there are 0 ≤ j < i and V ⊇ Ui such that ϕ carries

Uj into V .

Suppose that ϕ is quantifier-free and δ is existential.

Proposition 11.1 δ is ϕ-derivable from U0 iff there is a ϕ-derivation tree of δ from

U0.

Proof. ⇒ is obvious. ⇐: By induction on the length of the ϕ-derivation tree. The

case of length 1 is trivial. In passing from l to l + 1, let U0, . . . , Ul+1 be a ϕ-derivation

tree with Ul+1 |= δ. There are 0 ≤ i ≤ l and V ⊇ Ul+1 such that ϕ carries Ui into
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V . Indeed there is a ϕ-derivation tree of the existential sentence ∆Ui from U0 of length

≤ l. By induction there is a ϕ-derivation U ′0, . . . , U
′
k with U ′0 = U0 and U ′k |= ∆Ui . This

implies Ui ⊆ U ′k. With Proposition 7.1 ϕ carries U ′k into a V ⊇ V . Since δ is existential,

V |= δ. ♦

Let M be a 1-placed relation symbol and ≤, Q, F,X0, X1, . . . be 2-placed relation

symbols not in L.

To a finite set U of finite, connected structures over L we effectively associate a

sentence Φ = (φ0 ∧ φ1) in L ∪ {M,≤, Q, F,X0, . . . , Xr−1}, where φ0 is universal and φ1

is prenex with prefix type ∀∃∗, that axiomatizes in the finite the range of a one-to-one

(up to isomorphism6) representation of the ϕ-derivation trees of δ from a substructure

of a finite combination of U . Φ is also of the form (φ ∧
∧

0≤i≤r ∀x∃yXixy), where φ is

an existential-universal sentence.

Let C be the class of all substructures of the combinations of U and

l = max{|dom(U)| |U ∈ U}+ 1.

In order to obtain Φ we effectively associate to U a universal sentence ∀x0 . . . ∀xl−1αU ,

αU quantifier-free, in L that axiomatizes C.

Proposition 11.2 Let T be the set of all universal sentences in L with l quantifiers

that hold in all structures in C. Then T axiomatizes C.

6The ϕ-derivation tree U0, . . . , Ul is isomorphic to the ϕ-derivation tree V0, . . . , Um iff l = m and

there is f: dom(U0)→ dom(V0) for which f |dom(Ui) is an isomorphism from Ui to Vi for all 0 ≤ i ≤ l.
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Proof. Let V be a structure over L that satisfies T. Then every at most l-element

substructure of V belongs to C. Otherwise there would be a universal sentence in L

with l quantifiers that holds in all structures of C but fails in V , hence a γ ∈ T with

V 6|= γ, which is a contradiction.

Suppose that A is a component of V . A is closed in gf(V ). By Proposition 2.21(a),

gf(V |A) = gf(V )|A. By Proposition 2.14 gf(V |A) is connected. By Proposition 2.18 and

again Proposition 2.21(a) there is an ≤ l-element B ⊆ A for which V |B is connected.

With Proposition 2.24, since V |B ∈ C, V |B is embedded into some U ∈ U , which

contradicts |dom(U)| < l. Hence every component of V has cardinality < l. Thus it

belongs to C. This proves V ∈ C. ♦∧
T is logically equivalent to a universal sentence with l quantifiers. The next

proposition shows that the association of
∧
T to U is computable and allows us to set

∀x0 . . . ∀xl−1αU =
∧
T .

Proposition 11.3 A universal sentence in L with l quantifiers holds in all structures

of C iff it holds in every l-combination of U .

Proof. Indeed every at most l-element substructure of a combination of U is embedded

into an l-combination of U . A structure V over L satisfies all universal first-order

sentences with k quantifiers that hold in all structures of a set V of structures over L iff

every at most k-element substructure of V is embedded into some W ∈ V . ♦

Set δ = ∃x0 . . . xmζ(x0, . . . , xm), ζ quantifier-free. We shorten (x≤y ∧ x 6= y) by
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(G, u) |= γ[Rist : (s = t∧Riss) (s, t terms in {c0, . . . , cr}, 2 ≤ i ≤ n)][a0, . . . , am−1].

Obviously, since arp14(T0) and arp14(I0) are sets of 1-bound 14-rules, for j = 0, 1

if G is a 1-bound 14-multigraph and ϕj interprets H in G,

then H is a 1-bound 14-multigraph.

(9)

Let G,H be 1-bound 14-multigraphs, U a structure over {R1, P2, . . . , P14} and j = 0 or

j = 1. For the sake of precision, we make a few straightforward remarks regarding the

coding crg. From (8) it is easy to infer that if U is ψj-derivable from crg(G), then U =

crg(K) for some 1-bound 14-multigraph K. With (9) it follows that H is ϕj-derivable

from G iff crg(H) is ψj-derivable from crg(G). Given that H ⊆ G iff crg(H) ⊆ crg(G),

we obtain

H is a ϕj-product of G iff crg(H) is a ψj-product of crg(G). (10)

We go back to the set H, defined in Section 5.2 and used in Corollary 5.3 as well as in

Corollary 10.1, which is a finite set of at most 6-element structures in Gd14 ∩ G1 ∩ Gconn

and set H′ = {crg(G) |G ∈ H}. Thus H′ is a finite set of at most 6-element, connected

structures over {R1, P2, . . . , Pn}. Again we state a few elementary facts about crg. For

every combination set G of H and every combination set G ′ of H′

crg(
∑
G) =

∑
{crg(G) |G ∈ G},

{crg(G) |G ∈ G} is a combination set of H′ and

G ′ = {crg(G) |G ∈ F} for a combination set F of H.

(11)

Corollary 10.1 states that
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(a) no procedure decides for all finite F ⊆ Gd14 ∩ G1 whether srp14(∅), with ∅ the

empty word, is a ϕ0-product of a combination of F and

(b) no procedure decides for all H ∈ Gd14 ∩ G1 ∩ Gconn whether H is a ϕ1-product of a

combination of H.

In (a) we can indeed assume that the 14-multigraphs in F have pairwise disjoint domains.

With Corollary 7.2 we obtain that no procedure decides for all finite F ⊆ Gd14 ∩G1 with

pairwise disjoint domains whether srp14(∅) is a ϕ0-product of a combination of
∑
F and

therefore that no procedure decides for all finite G ∈ Gd14 ∩ G1 whether srp14(∅) is a

ϕ0-product of a combination of G. Finally with (10) we can state that

(a’) no procedure decides for all finite U over {R1, P2, . . . , P14} whether crg(srp14(∅))

is a ψ0-product of a combination of U .

(b), (10) and (11) yield the result:

(b’) No procedure decides for all finite U over {R1, P2, . . . , P14} whether U is a ψ1-

product of a combination of H′.

(a’), (b’) and (7) imply that the finite satisfiability problem for the sets of sentences

Σ0 = {Φ(ψ0,∆crg(srp14(∅)), {U}) |U finite structure over {R1, P2, . . . , P14}},

Σ1 = {Φ(ψ1,∆U ,H′) |U finite structure over {R1, P2, . . . , P14}},

where Φ was defined through (1) - (6), is undecidable.
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Let P0 = [∀∗∧∃2, (14, 17)]=, P1 = [∀16∧∃∗, (14, 17)]=. P0 is the class of all conjunc-

tions of a relational, universal sentence (allowing equality) and a relational, existential

sentence with 2 quantifiers (still allowing equality), that have at most 14 1-placed and

17 2-placed relation symbols and no j-placed symbols for j 6= 1, 2. P1 is the class of

all conjunctions of a relational, existential sentence (allowing equality) and a relational,

universal sentence with 16 quantifiers (still allowing equality), that again have at most 14

1-placed and 17 2-placed relation symbols and no j-placed symbols for j 6= 1, 2. For an

exact explanation of the class notation [P, (), ()] refer to [3]. Σ0 respectively Σ1 are con-

tained in the classes P0 ∧
∧

0≤i<13 ∀x∃ySixy respectively P1 ∧
∧

0≤i<13 ∀x∃ySixy, Si 2-

placed relation symbol (0 ≤ i < 13), of all conjunctions of the sentence
∧

0≤i<13 ∀x∃ySixy

and a sentence in P0 respectively in P1. These facts prove the following theorem:

Theorem 11.1 The finite satisfiability problems for the classes P0 ∧
∧

0≤i<13 ∀x∃ySixy

and P1 ∧
∧

0≤i<13 ∀x∃ySixy are undecidable. ♦

Regarding the decision problem recall that the class [∃∀∗] ∧ ∀x∃ySxy (S 2-placed

relation symbol) is the (undecidable) Ackermann’s reduction class for the (classical)

satisfiability problem [1], [7]. [∃∀∗] allows all relation symbols with no number bound,

but not the equality. It follows from the undecidability of the Gurevich class [∀, (0), (2)]=,

refer to [4], [9], that P2 := [∀∗, (0, 2)]= ∧ ∀x∃yS0xy ∧ ∀x∃yS1xy is undecidable as well.

Therefore the satisfiability problem for the first class in Theorem 11.1 is unsolvable. The

Gurevich class however (and, as a consequence, P2) does not have the finite satisfiability
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property,

∀x(ffgx = fx ∧ fgx 6= x) (f, g 1-placed function symbols)

being an axiom of infinity. For an explanation why, see [5]. It is also important to

point out that the class [∃∗∀∗, (ω, 1)]= ∧ ∀x∃ySxy has been proven decidable for finite

satisfiability by Kostyrko [2], [8].

We conclude this chapter with two open questions. Let Si be a 2-placed relation

symbol (i ∈ N). Set

Q0,j = [∀∗ ∧ ∃2, (ω, j)]= ∧
∧

0≤i<j ∀x∃ySixy,

Q1,j = [∀j ∧ ∃∗, (ω, ω)]= ∧
∧
i∈N ∀x∃ySixy,

(j ∈ N). By Kostyrko’s result the finite satisfiability problem for Q0,1 is decidable.

Since Q1,1 is contained in the Shelah class [6], its finite satisfiability problem is decidable

as well. By Theorem 11.1 the finite satisfiability problem for Q0,17 and for Q1,16 are

undecidable. This leaves us with the open questions:

Which is the largest j ∈ N for which Q0,j is decidable?

Which is the largest j ∈ N for which Q1,j is decidable?
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[6] E. Börger, E. Grädel, Y. Gurevich, The Classical Decision Problem, Springer, Berlin

Heidelberg New York, (Second Printing) 2001, pp. 345–375.
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12 From S-synthesis to organic chemical synthesis

In this chapter words and expressions from the vocabulary of organic chemistry are

defined in terms of the graph theoretical definitions given in Chapter 2 and 3. These

definitions will allow to clarify the intended organic chemical meaning of the graph

theoretical definitions and to translate into the chemical language several statement

previously obtained.

The words and expressions from the vocabulary of organic chemistry are defined

with parameters using the three distinct symbols +, −, •. The parameters are:

m ∈ N,

a surjective function, called multiplicity, from a set, whose elements are

called bonds, to {1, . . . ,m} (a bond of multiplicity 1, 2, 3, 4, > 1 is called

respectively single, double, triple, quadruple, multiple),

a set I ⊆ {+,−, •}, whose elements are called implicit symbols ,

a finite set A, with A∩ I = ∅ and A∪ I 6= ∅, whose elements are called atomic

symbols

and, finally, a function, called valence, from A ∪ I to N, assigning 1 to every

implicit symbol (not to be confused with the valence in an n-multigraph).

We call an element of A∪I (i. e. that is either an atomic or an implicit symbol) a building

symbol.
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For the rest of this chapter let n + 1 be the number of building symbols (i. e.

n = |A ∪ I| − 1) , s be a bijection from {0, . . . , n} to the set A ∪ I of building symbols

and d : {0, . . . , n} → N satisfy the condition that d(i) is the valence of s(i) (0 ≤ i ≤ n).

We call an element of G≤d ∩ Gm ∩ Gconn an arrangement. Hence an arrangement is a

finite, connected, m-bound n-multigraph A with deg
A

(a) ≤ d(val
A

(a, a)) (a ∈ dom(A)).

Since G≤d ∩ Gn = G≤d ∩ Gk for all k ≥ n, we can assume, without loss of generality,

that n ≥ m.

An element of Gd ∩ Gm ∩ Gconn is called a (organic) formula. Hence a formula is

an arrangement with degree requirement d. We call an isomorphism class of formulas

a compound and every formula in it a formula of the compound. We write that a

compound has the formula G to mean that G is a formula of the compound. A sum of

arrangements respectively a sum of formulas is the sum of a finite set of arrangements

respectively formulas with pairwise disjoint domains. Thus a sum of arrangements is an

element of G≤d ∩ Gm and a sum of formulas an element of Gd ∩ Gm.

Let A0, . . . , Ak (k ∈ N) be pairwise disjoint arrangements and G = A0 ⊕ . . .⊕ Ak.

Proposition 12.1 {dom(A0), . . . , dom(Ak)} is the set of the components of G.

Proof. Immediate consequence of Proposition 2.16. ♦

Proposition 12.2 The sum A0 ⊕ . . .⊕Ak is unique up to the order of the summands.

(More precisely, if G = B0⊕ . . .⊕Bj for pairwise disjoint arrangements B0, . . . , Bj (j ∈

N), then k = j and {A0, . . . , Ak} = {B0, . . . , Bj}.)
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Proof. Immediate from the previous proposition. ♦

We call (precisely) each Ai (0 ≤ i ≤ k) an arrangement of G and the compound C

a compound of G iff some Ai (0 ≤ i ≤ k) is a formula of C.

a ∈ dom(G) is called a position of G. A building symbol X occurs in G at a position

a of G (a is a position with X in G, a is an X position of G) iff s(val
G

(a, a)) = X. A

position with an atomic symbol in G is called an atom of G, a position with an implicit

symbol is called implicit in G, a position with a +, − respectively • is called a positive

charge, a negative charge respectively an electron of G. A charge of G is a positive or

negative charge of G. G is called implicit iff all its positions are implicit. It is called

atomic iff it is not implicit.

Assume that b is a bond of multiplicity i and u, v are positions of G. b joins u to

v in G iff u 6= v are atoms of G and RG
i (u, v). u carries v in G iff n ≥ 1, u 6= v, v is

implicit in G and RG
1 (u, v).

The reader attributing a chemical meaning to the definitions above should keep

in mind that it does not really matter what formulas, like a + position carrying a +

position or a • position, chemically mean. As we will see later, our concern are reactions

and with an adequate choice of the starting compounds and of the reaction step notion

such chemically rather weird constructions will not play any role. A + position carrying

a − position, which form a “pair of opposite charges”, or two • positions carrying each

other, which form a “bonding orbital”, could, on the other hand, be necessary for a

proper chemical representation, as we will see later in the examples.
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Proposition 12.3 Every position of the sum G of arrangements is carried in G by at

most one position and, if an implicit position p of G carries the position q in G, then q

carries p in G.

Proof. Exercise. ♦

We define

G◦ = B0 ⊕ . . .⊕Bj, where j ∈ N, B0, . . . , Bj are pairwise distinct and {B0, . . . , Bj}

is the set of all atomic arrangements in {A0, . . . , Ak}, if G is atomic;

G◦ = ∅, otherwise.

If H is a sum of arrangements, G,H are called atomically equivalent iff G◦ = H◦.

A compound is called implicit respectively atomic if some (and thus every) formula

of it is implicit respectively atomic. An implicit, building respectively atomic symbol of

a compound is an implicit, building respectively atomic symbol occurring at a position

of some (and thus every) formula of it.

Let now A0, . . . , Ak (k ∈ N) be pairwise non-isomorphic arrangements (i. e. Ai 6∼= Aj

for 0 ≤ i 6= j ≤ k) and c : {A0, . . . , Ak} → N. We denote by∑
A∈{A0,...,Ak} c(A)A := c(A0)A0 + . . .+ c(Ak)Ak

the class of all combinations of {A0, . . . , Ak} with coefficients c.

Proposition 12.4 The classes c0A0 + . . . + ckAk (k ∈ N, A0, . . . , Ak pairwise non-

isomorphic arrangements, c0, . . . , ck ∈ N) are precisely the isomorphism classes of the

sums of arrangements.
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Proof. Straightforward from the definition. ♦

Throughout the examples in this chapter, we assume that I = {+, −, •}, n =

6, m = 2, thus allowing only arrangements in which all bonds joining a position to

another one are single or double, that the atomic symbols are H, O, N, C, their valence

1, 2, 3, 4 respectively and finally that s maps 0 to +, 1 to H, 2 to O, 3 to N, 4 to C, 5

to − and 6 to •. Consequently, we obtain d = 1, 1, 2, 3, 4, 1, 1.

The arrangement

which is not a formula and in which a C position carries the − position and a double

bond joins a C to an O position, under the assumption of the proper identification of

the positions, is the same as the arrangement depicted by
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following the graphical representation of an n-multigraph in which the vertices are the

elements of its domain and the valence in it is written on vertices and edges with the

convention that the valence of a pair of distinct points between which there is no edge

is 0 and the valence 1 is omitted on vertices and edges. We will also say that the two

arrangements can be identified with each other.

The formula

which in organic chemistry is recognized as a chemical formula of the organic compound

acetaldehyde can be identified with the formula

Finally, the arrangement
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can be identified with

and is known in chemistry as a chemical formula of the hydroxide ion.

A semirule is a pair (G,H) of sums of arrangements, the left and the right side of

the semirule, that satisfies the fundamental reaction principles, i. e. the set of atoms

of G is equal to the set of atoms of H and for all positions u of both G and H the

building symbol occurring at u and the degree of u in G are the same as in H (i. e.

val
G

(u, u) = val
H

(u, u) and deg
G

(u) = deg
H

(u)). We denote the semirule (G,H) also

by G → H. Any compound of G is a starting compound and any compound of H a

product of the semirule G → H. A semirule where both sides are sums of formulas is

called a semiequation. The semirules G → H and K → J are atomically equivalent iff

G,K are atomically equivalent and H, J are atomically equivalent.

A semirule respectively a semiequation G → H for which G and H have the same

positions (and hence are similar) is called a reaction step rule, or just a rule (not to be

confused with an n-rule, defined in Section 3.1), respectively an equation. Obviously,
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if G is a sum of formulas and G → H a rule, then G → H is an equation. Indeed, if

G → H is a rule, then for all canonical expansion Ḡ of G over (Sn)r the pair (Ḡ,H) is

an r-move for Sn.

Let G → H be a semirule, lX(X ∈ I) be the number of X positions of G, that

are carried by another position and are not a position of H and rX the number of X

positions of H, that are carried by another position and are not a position of G. It

follows from graph theory that the sum of the degrees of the positions is even, whence

that
∑

X∈I(lX − rX) is even, which implies that
∑

X∈I lX and
∑

X∈I rX are both even

or both odd. As a consequence every semirule respectively semiequation G → H is

atomically equivalent to a rule respectively an equation.

Proposition 12.5 To every rule G → H there is an injective S-synthesis K0, . . . , Kl

with K0 = G, Kl = H and S 6= ∅ the m-void set of n-rules. In particular there is an

m-bound n-rule (G, u) with H = sh(G, u).

Proof. Follows from Corollary 4.1 of the Shift Theorem. ♦

Let R be a set of rules. A sum H of arrangements is an application of R to a sum G

of arrangements iff there is K → J ∈ R such that the set {(K̄, J)} of the r-move (K̄, J)

carries G into H for some (and thus for all) r ∈ N and canonical expansions K̄ of K

over (Sn)r. We abbreviate the notation by writing that H is an application of K → J

to G iff it is an application of {K → J} to G.
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K ∈ G≤d ∩ G2 can be identified with the 6-multigraph

and u = a, b, c, d, a, d, e, f . (8) is a 2-fold, separating elimination, since (K, u) is 2-fold,

a 6-elimination and separating.

The last example, similar to the immediately previous one, is the set of semirules

(9)

(R1, . . . , R5 = H,C), known in organic chemistry as vinylogous enolization [3] [5], where

the arrows are intended to put a negative charge on the symbol O and a positive charge

on the symbol H. Let R1, . . . ,R5 ∈ {H,C}. Rule (9) is the pair (K, sh(K, u)), where

K ∈ G≤d ∩ G2 can be identified with the 6-multigraph

293



L. Ermanni 12 From S-synthesis to organic chemical synthesis

Proposition 12.7 Let G be a formula of the compound C, H a sum of formulas and

A the set of compounds of H. Assume that the valence of every building symbol is ≤ m.

Then C is synthesizable from A according to RS iff every building symbol of C is a

building symbol of a compound of A.

Proof. C is synthesizable from A according to RS iff [ with the definition of product

and Corollary 12.1 ] G is a product of a combination of H iff [ Corollary 4.3 ] for every

position a of G there is a position b of H with val
G

(a, a) = val
H

(b, b) iff every building

symbol of C is a building symbol of a compound of A. ♦

Proposition 12.7 implies that, if all implicit symbols of the compound C are implicit

symbols of a compound in the set A of compounds, the criterion for synthesizability

of C from A according to RS is the law of conservation of matter: C is synthesizable

from A according to RS iff every atomic symbol of C is also an atomic symbol of a

compound of A. The criterion for synthesizability according to the most general set

of rules is the conservation of matter (which is also the most general principle of the

chemical reactions).

12.1 Decidability results

From the statement that the criterion for synthesizability according to the most general

set of rules is the conservation of matter we can immediately infer that a procedure

exists which decides for a finite, m-void set S of n-rules, any compound C and any finite

set A of compounds whether C is synthesizable from A according to RS .
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The next decidability and undecidability results involve less general sets of rules.

Theorem 12.2 There is a procedure that decides for any finite set R of basic additions,

any compound C and any finite set A of compounds whether C is synthesizable from A

according to R.

Proof. Assume A 6= ∅ is a finite set of compounds and that R = RS′ , for a finite set S ′

of basic n-additions. Let G be a formula of the compound C, F a choice set of A with

dom(K)∩dom(J) = ∅ for all distinct formulas K, J ∈ F .
∑
F is a sum of formulas and,

by setting S to be the set of all m-bound P ∈ S ′, we have R = RS . With Corollary 12.1

C is synthesizable from A according to R iff C is synthesizable from A according to RS

iff [ Corollary 12.1 ] G is an S-product of a combination of F iff [ Corollary 3.1 ] G is

an S-product of a combination of
∑
F . From Theorem 3.2 the basic addition problem

is solvable. Now, the basic addition problem is solvable

iff the Rad-synthesizability problem for Gdr is solvable

iff the Rad-synthesizability problem for Gdr, G is solvable

iff it is decidable given n ∈ N, a set S ∈ Rad of n-rules, n-multigraphs H ∈ Gdr and

G ∈ G whether G an S-product of a combination of H

iff it is decidable given a set S of basic n-additions, H,G ∈ Gm ∩ Gd whether G an

S-product of a combination of H

iff it is decidable given a set S of basic n-additions, a sum H of formulas and a

formula G whether G is an S-product of a combination of H. ♦
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The next proposition can be proven from Corollary 3.9 and Proposition 3.14 in a

completely analogous way to the proof of Theorem 12.2.

Proposition 12.8 (a) There is a procedure that decides for any finite set R of 1-fold,

unfragmented and building rules, any compound C and any finite set A of compounds

whether C is synthesizable from A according to R.

(b) There is a procedure that decides for any finite set R of separating rules, any

compound C and any finite set A of compounds whether C is synthesizable from A

according to R. ♦

So, for example, there is a procedure that for any compound C and any finite set A of

compounds decides whether C is synthesizable from A according to the set of rules that

are rule (4) or in the set (8) of rules. With Corollary 3.8 we can state a stronger result

than Proposition 12.8 (a):

If R is a set of 1-fold, unfragmented and building rules, then the compound C is

syntesizable from the set A of compounds according toR iff there is a reaction according

to R whose starting compounds are in A and whose right side is a formula of C.

The formal proof of this stronger result is completely straightforward and therefore

a good exercise for the reader. The solution of the exercise is presented here:

Let R be a set of 1-fold, unfragmented and building rules, C a compound, A a set

of compounds, G a formula of C and F a choice set of A whose elements have pairwise

disjoint domains. R = RS for a set S of 1-fold, unfragmented and building n-rules.
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C is syntesizable from A according to R

iff [ Corollary 12.1 ] G is an S-product of a combination of F

iff [ Corollary 3.1 ] G is an S-product of a combination of
∑
F

iff [ Proposition 3.5 ] G is a closed S-product of a combination of
∑
F

iff [ Corollary 3.8 ] G is S-synthesizable from a combination of components of
∑
F

iff G is S-synthesizable from a combination of F

iff there is an S-synthesis H0, . . . , Hl with Hl = G and H0 a combination of F

iff [ Theorem 12.1 ] there is a synthesis H0, . . . , Hl̄ according to R with Hl̄ = G and H0

a combination of F

iff, because every compound of a combination of F is in A, there is a reaction according

to R whose starting compounds are in A and whose right side is a formula of C.

Once translated into the language built with the vocabulary of organic chemistry,

which is an easy task, the proof of Proposition 3.14 delivers a procedure whose existence

is claimed in Proposition 12.8 (b).

Assume now that n = 14, m = 1, the valence of s(i) is 1 for 0 ≤ i < 3 and it is 2

for 3 ≤ i ≤ 14. Let C be the compound whose formula is the 2-element srp14(∅) and A0

be the set of compounds of the sum of formulas H0 to which Corollary 5.3 refers. Any

formula of any compound in A0 has at most 6 positions. arp14(T0) 6= ∅ is a finite set of

2-fold 14-additions (K, u) with |dom(K)| ≤ 12. Corollary 5.3 and Corollary 12.1 imply

the next proposition.
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Theorem 12.3 No procedure decides given a finite set A of compounds whether C is

synthesizable from A according to Rarp14(T0) and no procedure decides given a compound

D whether D is synthesizable from A0 according to Rarp14(I0). ♦

12.2 Generalized set of rules

A generalized set of rules is an interpretation ϕ for Sn of arbitrary range r that carries any

sum of arrangements at any r-sequence to its domain into a similar sum of arrangements.

Theorem 12.4 For every finite set R of rules there is an m-bound, reactional inter-

pretation ϕ for Sn and vice versa such that for all sums G 6= H of arrangements H is

an application of R to G iff ϕ carries G into H.

Proof. Let R be a finite set of rules. Following Proposition 12.5 form a finite set S

of m-bound n-rules such that R is the set of all G → sh(G, u) with (G, u) ∈ S. With

Theorem 10.3 find an m-bound, reactional interpretation ϕ for Sn such that for all

n-multigraphs G,H we have that H is an S-shift of G iff ϕ carries G into H.

Because of Lemma 12.1 H is an S-shift of G iff H is an application of R to G for all

sums of arrangements G 6= H.

For the vice versa let ϕ be an m-bound, reactional interpretation ϕ for Sn. With

Theorem 10.3 find a finite set S of finite m-bound n-rules such that H is an S-shift of G

iff ϕ carries G into H for all n-multigraphs G,H. Lemma 12.1 yields that for all sums

G 6= H of arrangements H is an S-shift of G iff H is an application of RS to H. ♦
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The association of an m-bound, reactional interpretation for Sn to a finite set R of

rules goes one step further. It is often the case that we would like to have a notion of

reaction that with every reaction G → H includes also its reverse H → G. Therefore

we define an equation G→ H to be a symmetrized reaction according to R iff G→ H

or H → G is a reaction according to R.

For a set A we define the inverse A′ of A by A′ = {(a, b)|(b, a) ∈ A}. A symmetrized

reaction according to R is obviously a reaction according to (R∪R′) and (R∪R′)′ =

(R∪R′). (R∪R′) is therefore invariant under inversion.

It is now a consequence of the next proposition that for every finite set R of rules

there is an m-bound, reactional interpretation ϕ for Sn, which maintains the invariance

under inversion (i. e. with ϕ′ = ϕ), such that for all sums G 6= H of arrangements

G→ H is a symmetrized reaction according to R iff H is ϕ-derivable from G.

Proposition 12.9 For every finite set R of rules there is an m-bound, reactional in-

terpretation ϕ for Sn, satisfying ϕ′ = ϕ, such that for all sums G 6= H of arrangements

H is an application of (R∪R′) to G iff ϕ carries G into H.

Proof. By Theorem 12.4 there is an m-bound, reactional interpretation ϕ for Sn such

that for all sums G 6= H of arrangements H is an application of (R ∪ R′) to G iff ϕ

carries G into H. By Proposition 10.22 there is a reactional interpretation ψ for Sn,

satisfying ψ′ = ψ, that, for all n-multigraphs G,H, carries G into H iff ϕ carries G into

H or H into G. But for all sums G 6= H of arrangements ϕ carries G into H iff it carries
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H into G, whence ψ is a reactional interpretation for Sn such that for all sums G 6= H of

arrangements H is an application of (R∪R′) to G iff ψ carries G into H. ψ is, indeed,

m-bound. ♦

Because of Theorem 12.4 and Proposition 12.9 it is natural to increase the expressive

power of the finite sets of rules by allowing a generalized set of rules ϕ to be used in

place of a finite set of rules, more specifically, by defining, first of all, that, for the

sums G,H of arrangements, H is an application of ϕ to G iff ϕ carries G into H and,

subsequently, corresponding to the definitions according to a set of rules, by defining

synthesis, synthesis from a set of compounds, synthesis of a compound, synthesizable

(in l steps) from a set of compounds, (l-step) reaction and reaction step, all, of course,

according to ϕ.

Till the end of this chapter let A be a set of compounds, the set F of formulas a

choice set of A, δ a sentence in Sn and ϕ a generalized set of rules of range r.

Another generalization similar to the one regarding the set of rules allows first-order

sentences to be synthesizable according to ϕ from a set of compounds: δ is synthesizable

(in l steps) according to ϕ from A iff there is a (l-step) reaction according to ϕ whose

right side satisfies δ and whose starting compounds belong all to A.

Proposition 12.10 δ is synthesizable in l steps according to ϕ from A iff δ is ϕ-

derivable in l steps from a finite combination of F .

Proof. δ is synthesizable in l steps according to ϕ fromA iff there is a synthesisG0, . . . , Gl

302



L. Ermanni 12 From S-synthesis to organic chemical synthesis

As we did in Section 7.3 with Theorem 7.7 we look at some examples of Proposi-

tion 12.12, that are built on the examples in Section 7.3, which used k- and 〈l, k〉-paths.

We refer back to the initial settings of I, n,m, the valence, the functions s, d and to

the graphical representation of n-multigraphs. Let Fk (k ∈ N) be the formula

and Fl,k (k, l ∈ N, l even) the formula

and E the formula + −. We set

Fk = {Fj | 0 ≤ j ≤ k} ∪ {E};

D = {Fk | k ∈ N} ∪ {E};

A equal to the set of all compounds with a formula in D;

Ak equal to the set of all compounds with a formula in Fk;

Fl,k = {Fi,j | 0 ≤ i ≤ l, i even and 0 ≤ j ≤ k} ∪ {E};
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E = {Fl,k | l, k ∈ N and l even} ∪ {E};

B equal to the set of all compounds with a formula in E ;

Bl,k equal to the set of all compounds with a formula in Fl,k;

G = {F36,52, F36,51, F34,52, F34,51, F16,51, F16,52, F16,53, F16,54};

C equal to the set of all compounds with a formula in G.

It requires a moment of thought to verify that for all r,m, l0, l1, k0, k1 ∈ N

(a) if the k0-path is 2, r,m-equivalent to the k1-path, then Fk0 ≡2,r,m Fk1 ;

(b) if the alternate l0-path is 2, r,m-equivalent to the alternate l1-path and the k0-path

2, r,m-equivalent to the k1-path, then Fl0,k0 ≡2,r,m Fl1,k1 .

Let i, l ∈ N, i 6= 0, l ≥ 2 and define (hj)1≤j≤2i+l, (h̄j)1≤j≤2i+l after the definition in

Section 7.3, by putting m = l, n = 2 and therefore r = 4.

Because of (a) and Theorem 6.2, the 2i+ l-sequence Q, where Qj is the equivalence

relation over the class of all formulas isomorphic to a formula in D (i. e. of the type Fk

for some k ∈ N) such that ∼= is finer than Qj and for all k0, k1 ∈ N

Qj(Fk0 , Fk1) iff k0 = k1 or k0, k1 ≥ hj+1

(0 ≤ j ≤ 2i+ l), is a [2, 4i, l]-sequence over D.

Because of (b), Theorem 6.2 and Proposition 6.21, the 2i + l-sequence P , where Pj

is the equivalence relation over the class of all formulas isomorphic to a formula in E
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such that ∼= is finer than Pj and for all l0, l1, k0, k1 ∈ N with l0, l1 even

Pj(Fl0,k0 , Fl1,k1) iff l0 = l1 or l0, l1 ≥ h̄j+1 and k0 = k1 or k0, k1 ≥ hj+1

(0 ≤ j ≤ 2i+ l), is a [2, 4i, l]-sequence over E , whence over G.

β : D → N with

β(Fk) = α(Uk) (k ∈ N), β(E) = 2i+ l,

where α is given by (1) of Section 7.3, is a Q-combination function over D and Fh1 a

choice set of D/Q0.

γ : E → N with

γ(Fl,k) = α(Ul,k) (l, k ∈ N, l even), γ(E) = 2i+ l,

where α is given by (3) of Section 7.3, is a P -combination function over E and Fh̄1,h1
a

choice set of E/P0.

Let ζ(x0, x1, x2, x3) be a first-order formula in S6, in which x3 occurs free, and the

interpretation ϕ for S6 of range 4 be constructed from ζ as at the beginning of Section

10.1. qr(ϕ) = qr(ζ). By Lemma 10.1

ζ-shift(G, u) = ϕ(G, u)

for all 6-multigraphs G and 4-sequences u to dom(G). ϕ is a connected modulo 2

generalized set of rules. Let l = iqr(ζ) + l0 with l0 ≥ 2. We begin with examining the

synthesizability from A. Abbreviate

M = 1 +
2i+l∑
j=1

hj = (2l + 2)
2i∑
j=1

(2i)/j + 2l+1(i+ 1)− 2(i+ 1).
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The next proposition follows from Proposition 12.12.

Proposition 12.13 A first-order property π expressible in S6 with quantifier rank l0

is synthesizable in ≤ i steps according to ϕ from A iff there is a ≤ i-step reaction

G → H according to ϕ for which H has π and G is of the type
∑h1

j=0 cjFj + dE with

cj ≤ β(Fj) (0 ≤ j ≤ h1) and d ≤ 2i + l iff there is a ≤ i-step reaction according to

ϕ whose right side has π and whose left side is of the type
∑h1

j=0 cjFj + dE, where∑h1

j=0 cj ≤M , cj ≤ 2i+ l (0 ≤ j ≤ h1) and d ≤ 2i+ l. ♦

The synthesizability from B is handled similarly to the synthesizability from A. Abbre-

viate

M = (
h̄1

2
+ 1)(h1 + 1) +

2i+l∑
j=2

h̄j
2
hj =

2i∑
j=1

h̄j
2
hj +

l−1∑
j=1

22(l−j)+1 +
h̄1

2
+ h1 + 2.

Again the next proposition follows from Proposition 12.12.

Proposition 12.14 A first-order property π expressible in S6 with quantifier rank l0 is

synthesizable in ≤ i steps according to ϕ from B iff there is a ≤ i-step reaction G→ H

according to ϕ for which H has π and G is of the type
∑h̄1

l=0

∑h1

k=0 cl,kFl,k + dE with

c(l, k) ≤ γ(Fl,k) (0 ≤ l ≤ h̄1, 0 ≤ k ≤ h1, l even) and d ≤ 2i + l iff there is a ≤ i-

step reaction according to ϕ whose right side has π and whose left side is of the type∑h̄1

l=0

∑h1

k=0 cl,kFl,k + dE, where
∑h̄1

l=0

∑h1

k=0 cl,k ≤M , cl,k ≤ 2i+ l (0 ≤ l ≤ h̄1, 0 ≤ k ≤

h1, l even) and d ≤ 2i+ l. ♦
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To make a numerical example of Proposition 12.13 with a concrete first order property,

we set i = 4, qr(ζ) = 1, l0 = 2 and add two definitions. We call a compound an ether iff

it has a formula containing the arrangement

We call a compound an acetal iff it has a formula containing the arrangement

The property of a sum of formulas that one of its compounds is an ether but none

an acetal is first-order expressible with quantifier rank 2. Therefore we can state that

there is a ≤ 4-step reaction according to ϕ whose starting compounds are in A with a

product that is an ether and no products that are acetals iff there is a ≤ 4-step reaction

according to ϕ whose left side is of the type

∑591
j=327 c

1
jFj +

∑326
j=195 c

2
jFj +

∑194
j=129 c

4
jFj +

∑128
j=64 c

8
jFj +

∑63
j=32 c

9
jFj+∑31

j=16 c
10
j Fj +

∑15
j=8 c

11
j Fj +

∑7
j=4 c

12
j Fj +

∑3
j=1 c

13
j Fj + c14

1 F0 + c14
2 E

with each ckj ≤ k, having a product that is an ether and no products that are acetals.
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For this example we used the sequence (hj)0≤j≤14 that has been calculated in Section 7.3.

Regarding the generalized set of rules ϕ with qr(ϕ) = 1, it should be remarked that the

set of rules (2) and (3), previously listed, can be easily expressed as a ζ-shift for some

first-order formula ζ(x0, x1, x2, x3) in S6 (in which x3 occurs free) with qr(ζ) = 1. Rule

(1), however, can not, but it can be replaced by the following, admittetly a little less

strong, rules, which can be expressed as a ζ-shift for some ζ as above.

(10)

(11)

(12)
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Therefore the set of rules (2), (3), (10), (11) and (12) is a very simple instance of the

generalized set of rules ϕ we are considering in this example.

To make a numerical example of Proposition 12.14 with a concrete first order prop-

erty, we set i = 3, qr(ζ) = 1, l0 = 2 and add one more definition. We call a compound a

peroxide iff it has a formula containing the arrangement

The property of a sum of formulas that one of its compounds is a peroxide but none

an acetal is first-order expressible with quantifier rank 2. Therefore we can state that

there is a ≤ 3-step reaction according to ϕ whose starting compounds are in B with

a product that is a peroxide and no products that are acetals iff there is a ≤ 3-step

reaction according to ϕ whose left side is of the type

∑120
l=68

∑235
k=0 c

1
2l,kF2l,k +

∑67
l=0

∑235
k=133 c

1
2l,kF2l,k +

∑67
l=50

∑132
k=0 c

2
2l,kF2l,k+∑49

l=0

∑132
k=99 c

2
2l,kF2l,k +

∑49
l=33

∑98
k=0 c

3
2l,kF2l,k +

∑32
l=0

∑98
k=65 c

3
2l,kF2l,k+∑32

l=16

∑64
k=0 c

6
2l,kF2l,k +

∑15
l=0

∑64
k=32 c

6
2l,kF2l,k +

∑15
l=8

∑31
k=0 c

7
2l,kF2l,k+∑7

l=0

∑31
k=16 c

7
2l,kF2l,k +

∑7
l=4

∑15
k=0 c

8
2l,kF2l,k +

∑3
l=0

∑15
k=8 c

8
2l,kF2l,k+∑3

l=2

∑7
k=0 c

9
2l,kF2l,k +

∑1
l=0

∑7
k=4 c

9
2l,kF2l,k +

∑1
l=1

∑3
k=0 c

10
2l,kF2l,k+∑0

l=0

∑3
k=1 c

10
2l,kF2l,k + c11

1 F0,0 + c11
2 E.
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with each cj2l,k ≤ j and c11
1 , c

11
2 ≤ 11, having a product that is a peroxide and no products

that are acetals. For this example we used the sequence (h̄j)0≤j≤11, (hj)0≤j≤11 that have

been already calculated in Section 7.3.

To make a third numerical example, this time using the set G, we set i = 2, qr(ζ) =

1, l0 = 2. Then D is a [2, 8, 4]-sequence over G. From the third example in Section 7.3,

in which the sequence Q has been defined by

Q =≡2,8,4,≡2,4,4,≡2,2,4,≡2,2,4,≡4,≡3,≡2,≡1,

we infer that Dj(Fl0,k0 , Fl1,k1) iff Qj(Ul0,k0 , Ul1,k1)(Fl0,k0 , Fl1,k1 ∈ G, 0 ≤ j ≤ 8). Therefore

(1)G∈G is a D-combination function over G and G a choice set of G/D0. This allows us,

for example, the conclusion that there is a 0-, 1- or 2-step reaction according to ϕ whose

left side, for some c0, . . . , c7 ∈ N is of the type

c0F36,52 + c1F36,51 + c2F34,52 + c3F34,51 + c4F16,51 + c5F16,52 + c6F16,53 + c7F16,54

with a product that is a peroxide and no products that are acetals iff there is a 0-, 1- or

2-step reaction according to ϕ with a product that is a peroxide and no products that

are acetals, whose left side is of the type

c0F36,52 + c1F36,51 + c2F34,52 + c3F34,51 + c4F16,51 + c5F16,52 + c6F16,53 + c7F16,54,

where every cj (0 ≤ j ≤ 7) is 0 or 1.

In the following, last part of this section we apply some of the results obtained in

Chapter 9 to the synthesizability according to ϕ from A. In order to do this, we assume
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that A is finite and ϕ weakly invertible.

Let G be the class of all sums of formulas whose compounds are in A and C be the

class of all right sides of a reaction according to ϕ whose starting compounds are in

A. We will find a few conditions for the existence of a procedure that decides for all

sentences in Sn whether they are synthesizable according to ϕ from A, as well as for the

axiomatizability of C in the finite.

First of all, we notice that G = cmb(F)f, C = ~ϕ(G) = (~ϕ(cmb(F)))f and that F ,

being a choice set of A, is a finite set of pairwise non-isomorphic, connected, m-bound

n-multigraphs with degree requirement d. m,n, d have been set, once for this whole

chapter, at the beginning of it. The sentence ϑF was defined in Section 2.5 and satisfies

cmb(F) = modSn(ϑF). Set ξj = ∃c0 . . . crj−1ϑFϕ
′j.

Theorem 12.5 The following statements are equivalent for all i ∈ N:

(i) i is the least k ∈ N such that every sentence in Sn that is synthesizable according

to ϕ from A is synthesizable in ≤ k steps according to ϕ from A.

(ii) i is the least elementary bound of G, ϕ.

(iii) i is the least k ∈ N for which (
∨
j∈N ξj ↔

∨
0≤j≤k ξj) holds in all finite structures

over Sn.

(iv) The rank of G, ϕ is i.

(v) The rank of cmb(F), ϕ is i.
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(vi) i is the least k ∈ N with |= (
∨
j∈N ξj ↔

∨
0≤j≤k ξj).

(vii) i is the least elementary bound of cmb(F), ϕ.

Proof. (i) ⇔ (ii) follows directly from Corollary 12.2 and the definition of elementary

bound. The pairwise equivalence of (ii) - (vii) is an immediate consequence of Theo-

rem 9.6. ♦

Theorem 12.6 The following statements are equivalent:

(i) There is i ∈ N such that every sentence in Sn that is synthesizable according to ϕ

from A is synthesizable in ≤ i steps according to ϕ from A.

(ii) ~ϕ(cmb(F)) is axiomatizable.

(iii) ~ϕ(cmb(F)) is closed under ultraproducts.

(iv)
∨

0≤j≤i ξj axiomatizes ~ϕ(cmb(F)) for some i ∈ N.

(v) The rank of cmb(F), ϕ is not ∞.

(vi) There is an elementary bound of cmb(F), ϕ.

(vii) There is an elementary bound of G, ϕ.

(viii) The rank of G, ϕ is not ∞.

(ix)
∨

0≤j≤i ξj axiomatizes C in the finite for some i ∈ N.
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Proof. (i) ⇔ (vi) follows from Theorem 12.5. The pairwise equivalence of (ii) - (ix) is

an instance of Theorem 9.7. ♦

Proposition 12.15 Assume that one (and thus all) of (i) - (ix) in Theorem 12.6 holds.

(a) There is a procedure that decides for all sentences in Sn whether they are synthe-

sizable according to ϕ from A.

(b) Th(~ϕ(cmb(F))) is decidable.

(c) Th(C) is decidable.

Proof. Corollary 9.8 states that the ϕ-derivability problem for cmb(F) is solvable.

Now, Proposition 12.11 yields (a). (b) is an instance of Corollary 9.9. (c) follows from

Corollary 7.24 and (b), given that C = (~ϕ(cmb(F)))f. ♦

Assume that ϕ is quantifier-free, which is in particular the case if it is m-bound and

reactional. Proposition 9.4 yields:

Proposition 12.16 Assume that one (and thus all) of (i) - (ix) in Theorem 12.6 holds.

(a) ~ϕ(cmb(F)) is axiomatized by a sentence in ΣL
3 .

(b) ~ϕ(cmb(F)) is preserved under 3-fillings. ♦
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[4] H. Kaufmann, A. Häderer, Grundlagen der organischen Chemie, Birkhäuser Verlag,
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∩,
⋂

intersection of sets, page 28
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∧,∨,¬,∀,∃,
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∨
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f: A→ B f is a function from A to B, page 30

νF arity of the symbol F , page 29
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qr(ϕ) quantifier rank of ϕ, page 29

dom(U) domain of the structure U , page 30

RU interpretation of the relation symbol R in the structure U , page 30

fU interpretation of the function symbol f in the structure U , page 30

cU interpretation of the constant c in the structure U , page 30

U �L reduct of the structure U to L, page 30

(U,A) expansion of U with the elements of A, page 30

U, (S:F ) expansion of U with S, page 30

∼= isomorphic, page 31

⊆,⊇ substructure, extension, page 31

U |A restriction of the structure U to the set A, page 31

U |A restriction of the structure U with constants to the set A, page 115

e
U,V

unique homomorphism from canonical U to V , page 31

∑
U sum of the set U of structures, page 31
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U ⊕ V sum of U and V , page 32

Th(C) theory of C, page 33

cmb(U) class of all combinations of U , page 32

|= logical satisfaction relation, page 33

modL(T) class of models of T, page 33

Cf class of all finite structures in C, page 33

≡ elementarily equivalent, page 33

≡m m-equivalent, page 33

≡k,m k,m-equivalent, page 34

≡k,r,m k, r,m-equivalent, page 132

�,� elementary substructure, elementary extension, page 34

∆U,u primitive type of u in U , page 35

∆U axiom of the extensions of finite U , page 35

Σ∗ set of all words over alphabet Σ, page 35

|w|Σ length of w (w. r. to Σ), page 35

vw concatenation of the words v, w, page 35
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ΠS
i , ΣS

i prefix based sets of formulas in S, page 36

A/Q set of equivalence classes of A by Q, page 36

αVE,U , page 37

Sn n-multigraph symbols, page 43

Tn n-multigraph theory, page 43

val
G

() valence in G, page 43

deg
G

() degree in G, page 44

nb
G

() neighbourhood in G, page 47

nbk
G

() k-neighbourhood in G, page 48

nbk
U

() k-neighbourhood in the structure U , page 116

cl
G

() closure in G, page 48

gf(U) Gaifman graph of U with constants, page 116

gf(U) Gaifman graph of U , page 54

deg
U

() degree in the structure U , page 54

ϑU axiom for the combinations of U , page 61

ũ sequence for the inverse shift, page 65
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sh(G, u) shift of G at u, page 64

sh−1(G, u) inverse shift of G at u, page 65

S-sh(G, u) S-shift of G at u, page 66

ζ-sh(G, u) ζ-shift of G at u, page 73

G class of all finite n-multigraphs, page 74

R class of all finite sets of finite n-rules, page 74

Gd class of all finite n-multigraphs with degree requirement d, page 75

Gm class of all finite, m-bound n-multigraphs, page 75

Gxy subclass of G with some property, page 75

Rxy subclass of R with some property, page 75

dn a degree requirement function, page 76

S̃n {R4, . . . , Rn}, page 101

nrpn() natural n-representation, page 104

srpn() second n-representation, page 104

trpn() third n-representation, page 104

arpn() addition n-representation, page 106
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0 set of values in U of the constants in C0, page 115

Uk(A) restriction of U to its k-neighbourhood of A and the constants, page 116

lft(U), rgt(U) left, right end point of an r, k-path, page 123

ctr(U) element with S in an r, 〈l, k〉-path, page 140

Lr L ∪ {c0, . . . , cr−1}, page 147

(U, u) expansion of U with u for c0, . . . , cr−1, page 147

ωL identity interpretation, page 147

qr(ϕ) quantifier rank of the interpretation ϕ, page 147

ϕ(U) structure ϕ defines in U , page 148

↔ equivalence between interpretations, page 148

ϕ|γ ϕ relativised by γ, page 149

dom(ϕ) domain of the interpretation ϕ, page 150

ζϕ axiom for dom(ϕ), page 150

Eϕ function induced by ϕ, page 158

ΦF interpretation associated to F , page 159

ϕi(C) class of structures ϕ-derivable in i steps from C, page 153
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ϕ≤i(C) class of structures ϕ-derivable in ≤ i steps from C, page 153

~ϕ(C) class of structures ϕ-derivable from C, page 153

ψ ϕ composition of ψ, ϕ, page 165

ϕn n-th power of the interpretation ϕ, page 167

n/m integer quotient of n and m, page 171

|U|E , page 177

ϕ′ inverse interpretation, page 190

⇒Σ relation between structures based on Σ, page 201

Mϕ set of r-moves for ϕ, page 242

ΨR interpretation for the replacement R, page 244

G◦ sum of atomic arrangements, page 275
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Ackermann’s reduction class, 269

n-addition, 71, 80, 90, 106, 111, 280, 284,

285, 294, 299

addition, 280, 285, 294, 297

alphabet, 35, 101

alternate k-path, 136

alternate r, k-path, 137

alternate shift r, k-path, 137

alternating sequence, see multigraph

application, 241

application (of set of rules), 279, 289, 300,

301

arrangement, 273–278

arrangement of a sum of arrangements, 274

atom, 274

atomic arrangement, 274

atomic symbol, 272

atomic symbol of a compound, 275, 296

atomically equivalent, 275, 279

atomically equivalent (rules), 278, 282, 285,

287, 290

axiomatizable, 33, 153, 210, 214, 215, 222,

228, 313

axiomatize, 33, 207, 208, 210, 213–215, 217,

222, 223, 232, 240, 262, 313, 314

axiomatize in the finite, 33, 216, 222, 313

basic, see n-rule

bond, 272, 274

m-bound, 44, 98, 266, 273

m-bound interpretation, see interpretation

Σ-bound of C, ϕ (in the finite), 167

building, see n-rule

building symbol, 272

building symbol of a compound, 275, 296

canonical, 30, 240, 250

carries, 241–260

carry (a position), 274

carry into, 148, 232, 300, 301
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chain of structures, 34

choice set, 28

Q-choice, 37

full, 37, 188

circular sequence, see multigraph

closed set, see n-multigraph

closed set in a structure, 32

k-closed set, see n-multigraph

closed substructure, see n-multigraph

closed substructure of a structure, 32, 58

closure, see n-multigraph

combination, 32, 56, 57, 74–75, 92, 98–100,

109, 110, 262, 263, 265, 268

m-combination, 32, 90, 92

finite-combination, 32, 69

with coefficients, 32

combination function, 32

E-combination function over U , 177, 185,

186, 189, 303

combination set, 32

with coefficients, 32

component, 48, 49, 51–57

composable, see interpretation

compound, 273, 295–298, 300, 302–311

atomic, 275

implicit, 275

compound of a sum of arrangement, 274

computation, 35

connected, 52–57, 273

connected modulo k, 170, 178, 234

connected modulo k at stage i, 170

connected modulo k in U , 132

constant, 29

contained, 31

Q-contraction, 37, 177, 188

define in, 148, 151, 167

degree, 44, 52, 93, 98

degree function, 44, 52

degree requirement, see n-multigraph

ϕ-derivable, 153, 249, 261, 265, 302, 303

ϕ-derivation, 153
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l-sequence, 29

finite, 29

length, 29

[k, r,m]-sequence over U , 177, 186, 303

shift, 64–98

S-shift, 66–74, 80, 106–109, 239, 240,

258, 280, 300

ζ-shift, 73, 235, 237

shiftable, see n-multigraph

shift r, k-path, 133

side (of a semirule), 278

signature (of an r, k-path), 124

similar, 44, 51, 67, 93, 94, 98, 233, 240

similarity preserving, see interpretation

single bond, 272

solvable, 35

starting compound, 278

structure, 30, 43

n-substitution, 71, 280, 284, 286, 291

substitution, 280, 284, 286, 291

substructure, 31

subword, 35

sum of U , 31, 56

sum of arrangements, 273–279, 294, 300,

301

sum of formulas, 273–280

symbol, 29

function, 29

relation, 29

symmetrized reaction according to R, 301

synthesis, 67, 98

S-synthesis, 67, 279, 294

synthesis according toR, 280, 288, 294, 296

synthesis according to ϕ, 302

synthesizable, 67

S-synthesizable, 67–69, 85, 90–92, 98, 107

synthesizable according toR, 281, 295–298,

300

synthesizable according to ϕ, 302–304, 307,

311

theory, 33
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Turing machine, 35, 102

type, 35

ultraproduct, 151, 240

unfragmented, see n-rule

ϕ-uniform theory, 226

m-void set of n-rules, 67

void set of n-rules, 67

weakly invertible , see interpretation

zero-valued multigraph, see multigraph
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